
Efficient Randomized Algorithms for
Information Dissemination, Distributed

Voting, and Plurality Consensus

PhD Thesis

Efficient Randomized Algorithms for
Information Dissemination, Distributed

Voting, and Plurality Consensus

Dominik S. Kaaser

November 2016
MMXVI

Dissertation submitted to the Faculty of Natural Sciences
at the University of Salzburg in partial fulfillment of the
requirements for the doctoral degree Dr. techn.

Supervisor: Univ.-Prof. Dr. Robert Elsässer
Department of Computer Sciences
University of Salzburg

Department of Computer Sciences
University of Salzburg
Jakob-Haringer-Straße 2
5020 Salzburg
Austria

Dominik S. Kaaser
Efficient Randomized Algorithms for Information Dissemination,
Distributed Voting, and Plurality Consensus
November 2016 · commit d0a6b08

to the reader

Contents

Preface xi

Abstract xiii

Introduction 1

1 Introduction 3
1.1 Distributed Systems . 3
1.2 Organization . 4
1.3 Publications and Contributions 5

2 Algorithmic Ingredients 9
2.1 Models for Distributed Systems 10
2.2 Randomized Algorithms . 11

3 Stochastic Ingredients 13
3.1 Union Bound . 14
3.2 Chernoff Bounds . 14
3.3 The Azuma-Hoeffding Inequality 15

4 Our Results 17
4.1 Information Dissemination . 17
4.2 Load Balancing . 18
4.3 Distributed Voting and Plurality Consensus 19

I Information Dissemination 23

5 Introduction 25
5.1 Related Work . 26
5.2 Our Results . 28
5.3 Model and Notation . 29

6 Traditional Model 31
6.1 Phase I – Distribution . 33
6.2 Phase II – Random Walks . 36
6.3 Phase III – Broadcast . 51

vii

Contents

7 Memory Model 53
7.1 Leader Election . 54
7.2 Gossiping Algorithm and its Analysis 56

8 Empirical Analysis 63
8.1 Communication Complexity . 63
8.2 Robustness of the Memory Model 66

A Additional Lemmas 71

II Load Balancing 73

9 Load Balancing 75
9.1 Models . 77
9.2 New Results . 79

10 Framework for Diffusion Schemes 81
10.1 First Order Diffusion Schemes 81
10.2 Randomized First Order Scheme 83
10.3 Second Order Diffusion Schemes 84
10.4 Randomized Second Order Scheme 85
10.5 Negative Load in Second Order Schemes 86

11 Simulation Results 89
11.1 Results for the Torus . 91
11.2 Further Networks . 94

III The Deterministic Majority Voting Process 103

12 Introduction 105
12.1 Preliminaries . 107
12.2 Our Contribution . 108

13 NP-Completeness 111
13.1 Reduction . 111

14 Bounds on the Voting Time 123
14.1 Improved Bounds for Dense Graphs 127
14.2 The Influence of Symmetry . 129

15 Further Computational Properties 133

viii

Contents

IV Rapid Plurality Consensus 139

16 Introduction 141
16.1 Model . 146
16.2 Our Contribution . 148

17 Plurality Consensus with Two Choices 151
17.1 Lower Bounds . 158
17.2 Comparison with the 3-Majority Process 163

18 One Bit of Memory 165

19 Asynchronous Protocol 175
19.1 Analysis of the Check-Synchronicity procedure 181
19.2 Analysis of the Shuffle Gadget 182
19.3 Analysis of the Two-Choices sub-phase 186
19.4 Analysis of the Bit-Propagation sub-phase 189
19.5 The Endgame . 197
19.6 Proof of Theorem 63 . 199

20 Simulation Results 201

Conclusions and Outlook 205

21 Summary and Conclusions 207

22 Open Problems 211

Appendix 213

ix

Preface

Moore’s law, named after Gordon Moore, co-founder of Intel, describes the
observation that the number of transistors on integrated circuits doubles
approximately every two years. The prediction proved accurate for several
decades, and progress in digital electronics is strongly linked to Moore’s law. A
similar behavior can be observed in the peak performance of high performance
computing systems ranked in the TOP500 list, which over the last decades
also grew exponentially.
In contrast, in the same period the bandwidth of computer networks has

grown linearly over time.
Given that the National University of Defense Technology, China, announced

plans to build an exascale cluster system which targets a peak performance of
1018 flops, and that such a system expectedly suffers from a tremendously large
rate of unrecoverable errors, there is obviously a need for efficient and robust
communication protocols. These protocols should solve various communication
tasks efficiently in terms of a small communication overhead and robustly,
allowing convergence even under presence of a relatively large number of errors.

The main goal of my thesis is to devise such protocols and to analyze their
performance in a theoretical framework. The main ingredients are so-called
randomized algorithms. Therefore, a significant part of my work also deals
with the analysis of stochastic processes, with the goal to show that with a
high probability the proposed protocols indeed give correct results.

The thesis was created while I worked in the Efficient Algorithms Group
at the University of Salzburg under the supervision of Robert Elsässer. It
contains our results over the last three years. While some of these results have
already been presented at international conferences, this thesis contains the
full versions of the papers including all proofs and, to some extent, additional
content.
For full understanding of the presented results, the well-disposed reader is

expected to have basic knowledge in algorithm analysis and probability theory,
as the fundamental concepts from these areas will not be covered in this thesis.
However, in the first part a short introduction is given to those stochastic
techniques which are well-established in the scientific community but might be
missing in a standard computer science curriculum.

xi

Preface

Acknowledgment

It is my pleasure to take this opportunity to express my gratitude and thank
everyone who encouraged and supported me throughout the time of writing
this thesis. In particular, I am grateful to my PhD advisor Robert Elsässer for
giving me the opportunity to work, study, and research under his supervision in
the Efficient Algorithms Group at the University of Salzburg. Our cooperation
forms the foundation of the results presented in this thesis and his guidance
was an invaluable contribution to my scientific and personal development.

Besides my supervisor, I would like to thank Tomasz Radzik for reviewing my
thesis and all members of the dissertation committee for their valued feedback.
I also thank Petra Berenbrink for the great times in Vancouver and in Hamburg,
where she provided me the opportunity to work with her research group. I
very much enjoyed – and still enjoy – our collaboration.

Furthermore, I would like to thank my fellow PhD students, co-authors, and
friends Frederik Mallman-Trenn, Emanuele Natale, and Peter Palfrader. The
last years would not have been the same without the stimulating discussions,
the sleepless nights when approaching deadlines, and all the fun we have had.

I also wish to thank Andreas Bilke and Günther Eder, as well as all friends
and colleagues from the Department of Computer Sciences at the University
of Salzburg. Over the last years, we have shared many experiences and it has
always been a pleasure to work with them.
I thank my parents and my family for their support throughout my entire

educational career.
Last but not the least, I would like to express my sincere gratitude to my

girlfriend Linda Schallmoser for her unconditional support, understanding
patience and loving encouragement, always.

Salzburg, Austria
November 2016

Dominik S. Kaaser

Parts of this thesis were supported by the Austrian Science Fund (FWF) under
project numbers P 25214 and P 27613.

xii

Abstract

In this thesis, we analyze randomized algorithms to solve various communica-
tion tasks in distributed systems. The problems we discuss are information
dissemination, load balancing, distributed voting and plurality consensus.
Information dissemination is a fundamental problem in parallel and dis-

tributed computing. In the broadcasting problem, a single message has to
be spread among all nodes of a graph. A prominent communication protocol
for this problem is based on the so-called random phone call model (Karp
et al., FOCS 2000). In each step, every node opens a communication channel
to a randomly chosen neighbor, which can then be used for bi-directional
communication.
Berenbrink et al., ICALP 2010, considered the so-called gossiping problem

in the random phone call model, where each node starts with its own message
and all messages have to be disseminated to all nodes in the network. It
is known that the bound on the number of message transmissions produced
by randomized broadcasting in complete graphs cannot be achieved in sparse
graphs even if they have best expansion and connectivity properties. In the first
result, we analyze whether a similar influence of the graph density also holds
w.r.t. the performance of gossiping. We study analytically and empirically
the communication overhead generated by gossiping algorithms in the random
phone call model in random graphs. We further consider simple modifications
of the random phone call model in these graphs. Our results indicate that,
unlike in broadcasting, there seems to be no significant difference between the
performance of randomized gossiping in complete graphs and sparse random
graphs.

The problem of diffusion-based load balancing is defined as follows. We
are given an interconnection network and a number of load items, which
are arbitrarily distributed among the nodes of the network. The goal is to
redistribute the load in iterative discrete steps such that at the end each node
has (almost) the same number of items. In diffusion load balancing, nodes are
only allowed to balance their load with their direct neighbors.

In our second result, we show empirically that second order schemes, which
are usually much faster than first order schemes, will not balance the load
completely on a number of networks within reasonable time. However, the
maximum load difference at the end seems to be bounded by a constant value,
which can be further decreased if a first order scheme is applied once this value

xiii

Abstract

is achieved by second order scheme.

In the deterministic binary majority process we are given a simple graph
where each node has one out of two initial opinions. In every round, each node
adopts the majority opinion among its neighbors. It is known that this process
always converges in O(|E|) rounds to a two-periodic state in which every node
either keeps its opinion or changes it in every round.
In our third result, we show that it is NP-hard to decide whether there

exists an initial opinion assignment for which it takes more than k rounds to
converge to the two-periodic state, for a given integer k. We then identify
suitable modules of a graph G to obtain a new graph G∆ that can be computed
in linear time. The worst-case convergence time of G∆ is an upper bound on
that of G. Our new bounds asymptotically improve the best known bounds
for various graph classes.

In our final result, we consider the problem of distributed plurality consensus.
We assume the presence of k distinct opinions in the complete graph. In the
most basic two-choices process we are given a graph in which initially every
node holds one of k different opinions. In each step, every node chooses two
neighbors uniformly at random. If the opinions of the two neighbors coincide,
then this opinion is adopted.
We show that if k = O(nε) for some small ε, then this protocol converges

to the initial majority within O(k · logn) steps, with high probability, as long
as the initial difference between the largest and second largest opinion is
Ω
(√
n logn

)
.

To further reduce the run time, we combine the two-choices process with a
simple rumor spreading algorithm and obtain a significantly faster algorithm.
Our main contribution is the adaption of this algorithm to the asynchronous
setting, where only one randomly chosen node per step performs at most two
queries. If the difference between the two largest opinions is at least Ω(b) where
b is the size of the second largest opinion, and k = exp

(
O
(
logn/ log2 logn

))
,

then our algorithm achieves the best possible run time of O(logn) in the model
where a node is allowed to communicate with at most constantly many other
nodes per step.

xiv

Introduction

1
Introduction

1.1 Distributed Systems

A distributed system is a collection of computing devices that interact via
a communication network in order to solve a common problem. The main
goal is to improve performance by solving suitable subproblems in parallel,
while at the same time the large number of compute nodes naturally provides
robustness against failures in individual components. This general definition
covers a wide range of modern computer systems, from weakly coupled systems
such as sensor networks to tightly coupled systems such as shared-memory
multi-processor systems. We will, however, focus in this thesis on the more
loosely coupled range. More precisely, we consider distributed systems subject
to the following limitations.

Lack of common memory. We assume that the computing devices do not
share a common memory. They rather communicate by passing messages over
the communication network.

Lack of common clock. Closely related to the lack of common memory,
we also assume that the computing devices do not have access to a global clock.
For some of our results, however, this assumption is weakened in the following
sense. We assume that the nodes start the distributed computation at the
same time and thus a weaker notion of common time exists or, to some extent,
can be established. Furthermore, in theoretical models of distributed systems
it is often assumed that all nodes operate in synchronous rounds.

Lack of network structure. While in classical computer networks a client-
server architecture is well established, for distributed systems the peer-to-peer
computing paradigm has become increasingly popular. In particular, designated

3

1 Introduction

control-structures usually form single points of failure and therefore hierarchical
network structures are avoided when designing robust and scalable systems.
Again, this constraint is weakened for some of our results. We therefore
complement our findings with an elaborate robustness analysis.

Heterogeneity. In contrast to classical high performance computing, where
a set of tightly coupled homogeneous compute nodes is required, we assume that
in distributed computing we are given a collection of heterogeneous systems. In
particular, the computing devices may significantly vary in processing speeds
and/or memory.

For a more detailed introduction to distributed systems, see, e.g., the text-
books by Attiya and Welch [AW04] and Kshemkalyani and Singhal [KS08].

The benefits of distributed computing systems allow improved performance
and resilience against component failure. However, they may come at a high
cost. Because of the lack of common memory, each component can only be
aware of the information that it acquires during the execution of an algorithm.
It therefore has only a limited, local view of the global state. From the lack of
a common clock and the heterogeneity of the compute nodes it furthermore
follows that the system operates in an asynchronous manner. Thus the times
at which events such as the receiving of a message occur cannot be known
precisely. Finally, due to the lack of network structures known a priori, even
simple tasks such as broadcasting, that is, sending a message to all other nodes,
cannot be done as efficiently as if the network structure was known.

Our main contribution in this work is to give efficient solutions to fundamental
problems that arise in distributed systems such as information dissemination or
consensus. To present a rigorous analysis of the correctness of our algorithms,
we first formally describe the underlying model of the distributed system in
Section 2.1. The remainder of this work is organized as follows.

1.2 Organization

Following this introductory part, this work is organized into four main parts.
At the beginning of each part we give a short overview over the problem
statement, the related work, and our contributions. In this introduction,
we will give a formal definition of our model of a distributed system. We
furthermore introduce the basic mathematical tools that we use in the analysis
of randomized algorithms.

The first part, Part I, presents our results on randomized gossiping algorithms
for efficient information dissemination in large networks. In Part II, we present
our results on diffusion-based load balancing algorithms. Finally, in Part III
and in Part IV we analyze distributed voting and plurality consensus processes.

4

1.3 Publications and Contributions

1.3 Publications and Contributions

This thesis is based on four individual papers, three of which were accepted at
peer-reviewed conferences. The following table, Table 1.1, gives an overview
over the author’s contribution to all four papers. In this table, we identify
for each part of this thesis the main theorems and give a description of the
author’s contribution to the corresponding chapters.

Contributions

Part Chapter Result Contribution

Pa
rt

I
[E
K
15

] Chapter 6 Theorem 1 While the author was the main con-
tributor to this result, the proofs were
developed in cooperation with and un-
der supervision of the author’s PhD
advisor.

Chapter 7 Theorem 25
Theorem 26

There has been only a limited contri-
bution by the author to the theoretical
analysis of the memory model.

Chapter 8 Simulations The simulation software was developed
and the empirical analysis was con-
ducted by the author.

Pa
rt

II
[A

B
EK

15
] Chapter 10 Theorem 31

Theorem 34
Theorem 37

The contributions by the author to
the theoretical work in Chapter 10
were only limited. Note that in Chap-
ter 10 we only state those results from
[ABEK15] which are required for un-
derstanding the remainder of the part.
This chapter should not be accounted
to the contributions of the author and
to the contribution of this thesis.

Chapter 11 Simulations The author’s main contribution to this
topic is the empirical analysis presented
in Chapter 11. The simulation soft-
ware was implemented and the empiri-
cal analysis was conducted by the au-
thor, including data presentation and
explanations in the chapter.

5

1 Introduction

Part Chapter Result Contribution
Pa

rt
II
I

[K
M
N
16

] Chapter 13 Theorem 38 The author is the main contributor to
this chapter.

Chapter 14
Chapter 15

Theorem 39 The results were developed with equal
contributions while Frederik Mallmann-
Trenn and Emanuele Natale were visit-
ing the University of Salzburg in May
2015 and February 2015, respectively.

Pa
rt

IV Chapter 17 Theorem 61 The results were developed together
with Robert Elsässer, Tom Friedetzky,
Frederik Mallmann-Trenn, and Horst
Trinker, while Tom Friedetzky and
Frederik Mallmann-Trenn were visiting
the University of Salzburg in May 2015.

Chapter 18 Theorem 62 The author is the main contributor to
this result.

Chapter 19 Theorem 63 The results were developed together
with Frederik Mallmann-Trenn and
Robert Elsässer, with equal contribu-
tions, while Frederik Mallmann-Trenn
was visiting the University of Salzburg
in May 2016.

Chapter 20 Simulations The author implemented a preliminary
simulation software which provided the
initial impulse for this research. Addi-
tionally, Gregor Bankhamer conducted
extensive simulations which, however,
were not included in this thesis.

Table 1.1: contributions of the author to various chapters

6

1.3 Publications and Contributions

Presentations

All of the papers which had been accepted to peer-reviewed conferences were
presented by the author of this thesis at the corresponding conferences. A
list of presentations given by the author at these conferences and at various
workshops is given in Table 1.2.

Date Location Reference
Conference or Workshop

July 8 – 9, 2014 Vienna, Austria [EK15]
International Workshop on Algorithms and Software for Scientific Computing
May 25 – 29, 2015 Hyderabad, India
29th IEEE International Parallel & Distributed Processing Symposium

June 29 – July 2, 2015 Columbus, Ohio, USA [ABEK15]
35th IEEE International Conference on Distributed Computing Systems
February 22 – 24, 2016 Grundlsee, Austria
Austrian HPC Meeting 2016

October 5 – 8, 2015 Tokyo, Japan [KMN15]
29th International Symposium on Distributed Computing
August 22 – 26, 2016 Kraków, Poland [KMN16]
41st International Symposium on Mathematical Foundations of Computer Science

Table 1.2: presentations given by the author

Peer-Reviewed Publications

The following list contains a detailed record of all publications which were
accepted to peer-reviewed conferences and/or journals during the time of
writing this thesis.

[BHH+13] Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and
Peter Palfrader: Weighted Straight Skeletons in the Plane. In
Proceedings of the 25th Canadian Conference on Computational
Geometry (CCCG), 2013, pages 13–18.

[HK13] Martin Held and Dominik Kaaser: Curvature-Continuous Ap-
proximation of Planar Curvilinear Profiles. In Proceedings of the
Computer Aided Design Conference, 2013, pages 88–89.

[BHH+14] Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and
Peter Palfrader: Straight Skeletons of Monotone Polygons. In
Proceedings of the 30th European Workshop on Computational
Geometry (EuroCG), 2014.

7

1 Introduction

[HK14] Martin Held and Dominik Kaaser: C2 Approximation of Planar
Curvilinear Profiles by Cubic B-Splines. In Computer-Aided De-
sign and Applications, volume 11 (2), 2014, pages 206–219. doi:
10.1080/16864360.2014.846092.

[ABEK15] Hoda Akbari, Petra Berenbrink, Robert Elsässer, and Dominik
Kaaser: Discrete Load Balancing in Heterogeneous Networks
with a Focus on Second-Order Diffusion. In Proceedings of the
35th IEEE International Conference on Distributed Computing
Systems (ICDCS), 2015, pages 497–506. doi: 10.1109/ICDCS.
2015.57.

[BHH+15a] Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and
Peter Palfrader: A Simple Algorithm for Computing Positively
Weighted Straight Skeletons of Monotone Polygons. In Informa-
tion Processing Letters, volume 115 (2), 2015, pages 243–247. doi:
10.1016/j.ipl.2014.09.021.

[BHH+15b] Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser,
and Peter Palfrader: Weighted Straight Skeletons in the Plane.
In Computational Geometry: Theory and Applications, volume
48 (2), 2015, pages 120–133. doi: 10.1016/j.comgeo.2014.08.
006.

[EK15] Robert Elsässer and Dominik Kaaser: On the Influence of Graph
Density on Randomized Gossiping. In Proceedings of the 29th
IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2015, pages 521–531. doi: 10.1109/IPDPS.2015.32.

[KMN15] Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Na-
tale: Brief Announcement: On the Voting Time of the Determin-
istic Majority Process. In Proceedings of the 29th International
Symposium on Distributed Computing (DISC), 2015.

[KMN16] Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Na-
tale: On the Voting Time of the Deterministic Majority Process.
In Proceedings of the 41st International Symposium on Mathe-
matical Foundations of Computer Science (MFCS), 2016. doi:
10.4230/LIPIcs.MFCS.2016.55.

8

http://dx.doi.org/10.1080/16864360.2014.846092
http://dx.doi.org/10.1109/ICDCS.2015.57
http://dx.doi.org/10.1109/ICDCS.2015.57
http://dx.doi.org/10.1016/j.ipl.2014.09.021
http://dx.doi.org/10.1016/j.comgeo.2014.08.006
http://dx.doi.org/10.1016/j.comgeo.2014.08.006
http://dx.doi.org/10.1109/IPDPS.2015.32
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.55

2
Algorithmic Ingredients

Hinc incipit algorismus.
Haec algorismus ars praesens dicitur in qua
talibus indorum fruimur bis quinque figuris
0. 9. 8. 7. 6. 5. 4. 3. 2. 1.

(Alexander de Villa Dei,
Carmen de Algorismo, c. 1220)

The Euclidean algorithm to compute the greatest common divisor of two
integers is a prototypical example of an algorithm. In two simple variants, the
algorithm may be specified in one of the following ways.

Algorithm gcd(a, b)
while a 6= b do

if a > b then
a← a− b;

else
b← b− a;

return a;

Algorithm gcd(a, b)
while b 6= 0 do

c← b;
b← a mod b;
a← c;

return a;

The algorithm is named after the ancient Greek mathematician Euclid, who
described it around 300bc in the seventh book Elementary Number Theory
of his Elements [Hea08]. The word algorithm, however, is not derived from
the Greek roots αριθμός for number. In fact, the modern word algorithm
and the Greek word αριθμός are false cognates. (The word algorithm is
not derived from the Greek άλγος for pain either, as Erickson notes in his
introduction to algorithms [Eri14].) The origin rather lies in the latinized name
of the Persian mathematician Muh.ammad ibn Mūsā al-Khwārizmı̄ (Arabic:
ú× 	PP@ñ

	
mÌ'@ úæ�ñÓ 	áK. YÒm×) who lived c. 780 to 850ad [BM91].

Al-Khwārizmı̄ popularized the modern decimal system, which originated

9

2 Algorithmic Ingredients

from India, for basic arithmetical operations. The initial quote to this chapter
by Alexander de Villa Dei from his Carmen de Algorismo shows that around
1200, the name al-Khwārizmı̄ had been latinized to algorismi. It had lost
its original meaning and the word algorismus was used instead to denote
arithmetic techniques in the decimal system. It took, however, until the second
half of the 20th century until the advent of modern computer science, along
with suitable computing hardware, again changed the meaning of the word
algorithm.

In their book [CLRS09], Cormen, Leiserson, Rivest, and Stein define an
algorithm informally as

“[...] a sequence of computational steps that transform the input
into the output. [CLRS09]

However, the article by Blass and Gurevich [BG03] shows that for a rigorous
definition of the term algorithm an involved survey on the foundations of
theoretical computer science is required. While such a survey is beyond the
scope of this thesis, we will nevertheless define in the following section a basic
model that allows us to specify and analyze our algorithms.

2.1 Models for Distributed Systems

The analysis of algorithms and data structures is a prominent area in computer
science. Over the last decades, a generally accepted framework for specification
and analysis of algorithms has been established. Especially for the analysis of
sequential algorithms, the underlying machine model is vastly agreed upon.

In comparison, the analysis of algorithms for distributed systems is a relatively
new field. From the broad definition of distributed systems it follows that
defining a suitable machine model that eventually lends itself for a rigorous
analysis is much more difficult. While in classical sequential algorithms the
quantities of interest, namely run time and memory consumption, are easily
recognized, this does not carry over to the analysis of distributed algorithms. In
the analysis of distributed algorithms, apart from the overall run time and the
memory consumption per node, also the communication complexity and the
fault tolerance have to be considered [AW04]. For many problems in sequential
models, optimal algorithms can be devised, while results for distributed systems
often constitute a trade-off between run time and communication complexity.
In this thesis, we model the distributed system as a graph G = (V,E)

where V , the set of nodes, denotes the set of computing components of the
distributed system and E ⊆ V × V , the set of edges, represents the underlying
communication network. We assume that a compute node v ∈ V can directly
communicate with u ∈ V if and only if the edge (v, u) is present in E.
The algorithms we investigate are defined in the so-called synchronous

model. In this model, we assume that the execution of the algorithm runs
synchronously in discrete rounds. (In Part IV we give an extension of the

10

2.2 Randomized Algorithms

synchronous algorithm to an asynchronous model.) In the execution of an
algorithm in the synchronous model, in every round, each node performs
an action according to the algorithm’s definition in parallel. Nodes may
communicate with their direct neighbors, where we assume that they see the
previous round’s state. More formally, we assume that all nodes split their
rounds into an update step and a commit step. In the update step, nodes
compute their new state based on their current state and on their neighbor’s
state, and in the commit step, all nodes simultaneously adopt the new state.

2.2 Randomized Algorithms

In contrast to deterministic algorithms, so-called randomized algorithms use
random bits as an additional input. These random bits are used at least once
to make a random choices in the execution of the algorithm. While it seems
unintuitive at best to rely on random decisions, there are many problems which
can be solved much more efficiently using randomized algorithms compared
to the best known deterministic solutions. Additionally, in many cases the
randomized algorithms are much simpler and easier to implement.

“From the highly theoretical notion of probabilistic theorem
proving to the very practical design of PC Ethernet cards, random-
ness and probabilistic methods play a key role in modern computer
science.” [MU05]

As a consequence from relying on random decisions, it may happen that
the output of a randomized algorithm is no longer deterministically defined
upon the inputs, but rather is a random variable. As a consequence, these
algorithms may return an incorrect result with a certain probability. The class
of these algorithms is known as Monte Carlo algorithms. A classical example
for a Monte Carlo algorithm is the Miller-Rabin primality test [Mil76, Rab80],
which has a one-sided error probability. That means, the test either finds a
witness for the compositeness of a given number n and therefore returns that
n is definitely composite (note that this witness is not a non-trivial factor of
n, but rather a base for which Fermat’s little theorem is violated), or the test
returns that n is probably prime. Finally, by repeated application, the error
probability can be significantly reduced.

As a second class of algorithms, it may also be the case that the run time (or
any other resource) of a randomized algorithm is a random variable. In that case
we speak of Las Vegas algorithms. Many authors require that (deterministic)
algorithms always terminate, see, e.g., the work by Knuth [Knu97]. In the
context of randomized algorithms, we require that the algorithm eventually
terminates. The textbook example for such a Las Vegas algorithm is randomized
quicksort.
Intuitively, it may seem unusual to devise algorithms that may return

erroneous results or run for a very long time. However, if the probability

11

2 Algorithmic Ingredients

that the algorithm show this undesired behavior is very small, the benefits of
simpler algorithms that run fast in expectation may very well outweigh a small
error probability [MU05]. In this thesis, one of our main tasks is to perform a
probabilistic analysis of our algorithms. We will show by performing a careful
analysis that our algorithms work correctly and efficiently with high probability.
The notion of high probability along with the basic mathematical tools that
we use for the analysis of randomized algorithms will be introduced in the
following chapter.

12

3
Stochastic Ingredients

The phenomenon of concentration of measure is a building block in the analysis
of randomized algorithms. The underlying observation is that a function of a
large number of random variables is concentrated in a relatively narrow range,
under assumptions such as Lipschitz continuity and certain conditions on the
dependence among the random variables [DP09]. We can use this phenomenon
of concentration of measure in the analysis of randomized algorithms, and
thereby

“[...] we can argue that the observable behavior of randomized
algorithms is ‘almost deterministic’. In this way, we can obtain the
satisfaction of deterministic results, and at the same time retain
the benefits of randomized algorithms, namely their simplicity and
efficiency.” [DP09]

In this chapter, we give a formal introduction to some of the mathematical
tools that we use for the analysis of randomized distributed algorithms in this
thesis. Additionally, we will adhere to the following conventions.

Conventions

To increase readability, we omit ceilings and floors from numbers that strictly
should be integers (but are not), when the rounding error does not affect the
algorithm or its analysis. For example, we may specify an algorithm to run for
logn/ log logn rounds instead of blogn/ log lognc rounds.

The expression logn denotes log2 n, the logarithm to base 2, and lnn denotes
the natural logarithm of n. Furthermore, logk n denotes the exponentiation
(logn)k and log logn denotes the composition log(log (n)).

Throughout this thesis, the expression with high probability means a proba-
bility of at least 1−n−Ω(1), where n is the input size. At various places, we will

13

3 Stochastic Ingredients

show that an event occurs with high probability, to later use union bound to
conclude that the event occurs at a large number of nodes (or multiple rounds).
We therefore assume that the exact exponent, hidden in the asymptotic Ω(1)
notation, is large enough such that union bound again yields a high probability.

3.1 Union Bound

The following inequality is known as Boole’s inequality or the union bound. It
is very simple, but nevertheless tremendously useful [MU05]. It states that for
any finite or countable set of stochastic events, the probability that at least one
of the events occurs is bounded from above by the sum of the probabilities of
the individual events. More formally, let {E1, E2, . . . } be a finite or countable
set of stochastic events. Then we have

Pr

⋃
i≥1
Ei

 ≤∑
i≥1

Pr[Ei] .

3.2 Chernoff Bounds

The Chernoff bound gives an exponentially decreasing bound on tail distribu-
tions of sums of independent Bernoulli random variables.
Let Xi for i ∈ {1, . . . , n} be indicator random variables defined as

Xi =

1 with probability pi,
0 otherwise,

and let the random variable X be defined as X =
∑n
i=1Xi, the sum of n

independent Bernoulli trials, with expected value µ = E[X]. By applying
Markov’s inequality to the moment-generating function and by exploiting
independence, one gets for a δ with 0 < δ < 1 [HR90]

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
and

Pr[X ≤ (1− δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
.

In the remainder of this thesis, we will often use the following, slightly looser
but much more convenient bounds [MU05, DP09].

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ

3 for 0 < δ < 1

Pr[X ≥ (1 + δ)µ] ≤ e−
δµ
3 for 1 < δ

Pr[X ≤ (1− δ)µ] ≤ e−
δ2µ

2 for 0 < δ < 1

14

3.3 The Azuma-Hoeffding Inequality

Furthermore, we will use the following monotonicity property. Let µL be a
lower bound on µ and let µH be an upper bound on µ such that µL < µ < µH .
The following bounds hold [MU05, DP09].

Pr[X ≥ (1 + δ)µH] ≤ e−
δ2µH

3 for 0 < δ < 1 (3.1)

Pr[X ≤ (1− δ)µL] ≤ e−
δ2µL

2 for 0 < δ < 1 (3.2)

While the Chernoff bounds given in (3.1) and (3.2) have proven very use-
ful in the analysis of randomized algorithms, the limitation to independent
Bernoulli trials is a major drawback. However, under certain circumstances
these limitations can be overcome. More precisely, it can be shown that if
the Xis are negatively associated, above bounds still hold. See, e.g., the work
by Dubhashi and Ranjan on balls and bins [DR98] for further examples of
negative associations.
In the following section, we will present the Azuma-Hoeffding inequality,

which can also be applied when theXis are not independent. We will give a short
introduction to so-called martingales and the method of bounded differences.
Together with Chernoff bounds, the Azuma-Hoeffding bound completes the
box of stochastic tools used in our work.

3.3 The Azuma-Hoeffding Inequality

Martingales, a well-studied concept from classical probability theory, are defined
as a sequence of random variables X = X0, X1, . . . such that

E[Xi|Xi−1, . . . , X0] = Xi−1 for i ≥ 1 .

For a review of conditional probabilities and expectations, see, e.g., the textbook
by Motwani and Raghavan [MR95]. In our analysis, we focus on martingales
with bounded differences, that is, sequences of random variables which satisfy
the following condition.
Let X = X0, X1, . . . be a martingale. We say that X satisfies the bounded

differences condition with parameters ai, bi ∈ R if

ai ≤ Xi −Xi−1 ≤ bi for i > 0 .

Based on above definition, the Azuma-Hoeffding inequality is stated as
follows [DP09]. Let X = X0, X1, . . . be a martingale that satisfies the bounded
differences condition with parameters ai and bi. Then

Pr[Xn ≥ X0 + t],
Pr[Xn ≤ X0 − t]

}
≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
for i > 0 .

15

3 Stochastic Ingredients

If we have |Xi −Xi−1| ≤ ci for parameters ci ∈ R, it holds that [MR95]

Pr[|Xn −X0| ≥ t] ≤ 2 exp
(

−t2

2
∑n
i=1 c

2
i

)
for i > 0 .

In contrast to the Chernoff bounds given in the previous section, we do no longer
require independence among the variables Xi. The assumption of independence
is rather replaced by the martingale property.
The final stochastic ingredient used in this thesis is the so-called Doob

martingale and the method of bounded differences. Let X1, X2, . . . , Xn be a
sequence of random variables. The Doob sequence Y0, . . . , Yn of a function f
defined upon X1, . . . , Xn is defined as [DP09]

Yi = E[f(X1, . . . , Xn)|Xi, . . . , X1] for 0 ≤ i ≤ n .

It follows that Y0 = E[f(X1, . . . , Xn)] and Yn = f(X1, . . . , Xn). The Doob
sequence of the function f defines a martingale such that [DP09]

E[Yi|Xi−1 . . . X1] = Yi−1 for 0 ≤ i ≤ n .

The Doob martingale provides the link to the following statement, which is
known as the method of bounded differences. Let X1, . . . , Xn be an arbitrary
sequence of random variables and let f be a function such that for each i with
1 ≤ i ≤ n there is a ci ≥ 0 such that

|E[f(X1, . . . , Xn)|Xi, . . . , X1]− E[f(X1, . . . , Xn)|Xi−1, . . . , X1]| ≤ ci .

Then the deviation from the expectation is bounded as [DP09]

Pr[|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ t] ≤ 2 exp
(

−t2

2
∑n
i=1 c

2
i

)
.

For further versions of this bound, formal proofs, and applications including
the classical balls-into-bins experiment, see, e.g., the textbooks by Motwani
and Raghavan [MR95], Mitzenmacher and Upfal [MU05], and Dubhashi and
Panconesi [DP09].

16

4
Our Results

4.1 Information Dissemination

Information dissemination is the first fundamental problem from the area
of parallel and distributed computing that we discuss in this thesis. Given
a network, the goal is to spread one or several messages efficiently among
all nodes of the network. This problem has been extensively analyzed in
different communication models and on various communication networks. When
talking about information dissemination, we will distinguish between one-to-
all communication called broadcasting and all-to-all communication called
gossiping. Much of the work devoted to information dissemination refers to
the broadcasting problem. That is, a distinguished node of the network has
a piece of information, which then has to be distributed to all nodes in the
system. In gossiping, every node has its own piece of information, and all these
messages must be distributed to all other nodes in the network.
For our results, we consider the so-called random phone call model (and a

generalization thereof), which has been introduced by Demers et al. [DGH+87]
and analyzed in detail by Karp et al. [KSSV00]. The main ingredient in the
random phone call model is the following extension of the model described in
Section 2.1. In each step of the synchronous algorithms defined for that model,
every node opens a communication channel to a randomly chosen neighbor.
The channel can then be used for bi-directional communication to exchange
messages.
In the case of broadcasting, it is known that the performance of push-

pull algorithms in complete graphs cannot be achieved in random graphs of
small or moderate degree [Els06]. However, this does not carry over to the
gossiping problem. In Part I, we show that, concerning the number of message
transmissions, the performance of the algorithms developed by Berenbrink
et al. [BCEG10] in the random phone call model can be achieved in random
graphs as well. Note that regarding the impact of the graph density on the

17

4 Our Results

run time a similar study has been conducted by Fountoulakis et al. [FHP10].
They showed that there is almost no difference between the run time of the
push algorithm in complete graphs and random graphs of various degrees, as
long as the expected degree is ω(logn).
In contrast to the result by Chen and Pandurangan [CP12] for a slightly

weaker model, where they essentially showed a lower bound of Ω(n logn) on
the message complexity regardless of the run time for any gossiping algorithm,
our result shows that in random graphs one can obtain the same improvement
on the number of message transmissions w.r.t. the algorithms studied so far as
in complete graphs. More precisely, we adapt the algorithm by Berenbrink et al.
[BCEG10] to random graphs of suitable expected node degree and achieve a
run time of O

(
log2 n/ log logn

)
using only O(n logn/ log logn) messages.

Additionally, we will also describe a modification of this model that allows to
design an O(logn)-time algorithm which requires only O(n log logn) message
transmissions. Finally, we will present a series of plots showing our results
from an empirical evaluation of our algorithms.

4.2 Load Balancing

In the second part of this thesis we consider the problem of load balancing. In
this problem, we assume that we are given a parallel machine which consists
of a large number of processing nodes that cooperate to solve a common task.
However, in many real-world applications such as finite element simulations it
may happen that the amount of work load generated on the compute nodes
significantly deviates from the optimum. Now since the total run time of the
parallel computation clearly depends on the slowest processor, one can obtain
a substantial benefit by balancing the load among all processors. The goal is
therefore to redistribute the load such that at the end each node has (almost)
the same load [FWM94]. In Part II, however, we only consider diffusion based
load balancing schemes, where nodes are only allowed to communicate with
their direct neighbors to exchange load items. As before, we assume that
the load balancing procedure runs in synchronous rounds, during which the
exchange of load takes place.

We distinguish between continuous and discrete settings. In the continuous
case it is assumed that the load can be split into arbitrarily small pieces. This
assumption is very helpful when analyzing these algorithms [DFM99], albeit not
realistic for many applications such as finite element simulations or scheduling
problems. For discrete load balancing algorithms, however, we assume that
tasks consist of atomic units of load. Therefore, only integral amounts of load
can be transferred [EMS06, ABS16].

In Part II we state the theoretical main results from [ABEK15]. We describe
the framework for randomly rounding continuous diffusion schemes to discrete
schemes, we state a bound on the deviation between the so-called randomized

18

4.3 Distributed Voting and Plurality Consensus

second order schemes and their continuous counterparts, and we state a bound
for the minimum initial load in a network that is sufficient to prevent the
occurrence of so-called negative load.

As our main contribution, we support these results by extensive simulations
on various graph classes, comparing the performance of FOS and SOS and
giving an empiric insight into the behavior of diffusion based load balancing
processes.

4.3 Distributed Voting and Plurality Consensus

Distributed voting and plurality consensus are the final two fundamental
problems in distributed computing which we analyze in this thesis in Part III
and Part IV. In both problems, we are given a communication network
of players. Each of these players initially has one opinion from a set of
possible opinions. The main goal is that players communicate such that
eventually all players agree on one opinion. Similar to the previous results,
we again assume that players only communicate with their direct neighbors
in the network. Typically, one would demand from such a distributed voting
procedure to run accurately, that is, the opinion with the highest number of
initial supporters should win, and efficiently, that is, the voting process should
converge within as few communication steps as possible. Additionally, voting
and consensus algorithms are usually required to be simple, fault-tolerant, and
easy to implement [Joh89].

Distributed Voting According to the Majority Rule

In Part III, we study the following process which we denote the deterministic
binary majority voting process. In this process, we are given a graph G = (V,E)
where each node has one of two possible opinions, for instance, black and white.
The process runs synchronously in discrete rounds. In each round, every node
computes the majority opinion among its neighbors, which is then adopted.
Note that computing the majority is a deterministic operation. It is known
that this process always converges to a two-periodic state. In this two-periodic
state, nodes either keep their opinion or change their opinion in every round.
Although nodes may have alternating opinions in every round, we still denote
the number of rounds which is required to reach this two-periodic state as
convergence time. We will furthermore denote the maximum of the convergence
time over all possible initial opinion assignments as the voting time. The best
known bounds on the voting time are linear in the number of edges. However,
on many graph classes the process converges much faster. For example, on the
clique the process converges in at most one round. In Chapter 14, we therefore
perform a careful analysis of a potential function argument that had been used
to prove the O(|E|) bounds and show that it is possible to efficiently compute
much better bounds for these cases.

19

4 Our Results

There would not be much interest in computing better bounds, if one could
efficiently compute the maximum convergence time over all possible initial
opinion assignments. However, in Chapter 13 we show that this is unlikely to
be the case, since we can show that computing the voting time is NP hard by
reducing 3sat to the corresponding voting time decision problem.
Finally, in Chapter 15, we round off our main results by various additional

interesting computational properties of the majority process. For example, we
disprove a monotonicity of the convergence time w.r.t. the potential function
and show that the voting time is not, at least straightforwardly, bounded by
the diameter of the graph.

Plurality Consensus and the Power of Two Choices

Finally, we consider the following plurality consensus process. We are again
given a network of players modeled as a graph G = (V,E). As before, each
player in the network starts with one initial opinion from a set of possible
opinions. In the original problem, the voting process runs in synchronous
rounds, during which the players are allowed to communicate with their direct
neighbors in the network with the main goal to eventually agree on one of the
initial opinions. If all nodes agree on one opinion, we say this opinion wins and
the process converges.
One straightforward variant is the so-called pull voting running in discrete

rounds during which each player contacts a node chosen uniformly at random
from the set of its neighbors and adopts the opinion of that neighbor. In
[CEOR13], Cooper et al. show that the convergence time until a single message
emerges for pull voting on any connected graph G = (V,E) is asymptotically
almost always in O(n/(ν(1− λ2))). In this bound, λ2 is the second largest
eigenvalue of the transition matrix of a random walk on the graph G. The
parameter ν measures the regularity of G with 1 ≤ ν ≤ n2/(2m), where the
equality ν = 1 holds for regular graphs. However, many other fundamental
problems in distributed computing such as information dissemination [KSSV00]
or aggregate computation [KDG03] can be solved much more efficiently. There-
fore, Cooper et al. [CER14] considered a modified version. In their process,
every node is allowed to contact two neighbors. Only if both neighbors have
the same opinion, this opinion is adopted. In their model, for random d-regular
graphs, all nodes agree after O(logn) steps on the largest initial opinion with
high probability, provided that c1 − c2 = Ω

(
n
√

1/d+ d/n
)
.

Our first main contribution in Chapter 17 is an extension of the results by
Cooper et al. [CER14] on the complete graph to more than two colors. That
is, in our model we assume that every node of the clique Kn initially has one
of k possible opinions where k = O(nε) for some small positive constant ε.
Then, in Chapter 18 we investigate a modified model which we call the

memory model. In this model, we allow each node to store and transmit one
additional bit. Note that also in the classical two-choices protocol each node

20

4.3 Distributed Voting and Plurality Consensus

implicitly is assumed to have local memory, which is used, e.g., to store its
current opinion. The main difference between the classical model and the
memory model is that in the memory model each node also transmits one
additional bit along with its opinion when contacted by a neighbor. The use of
this additional bit allows us to drastically reduce the run time of the plurality
consensus process. Note that the first protocol by Berenbrink et al. [BFGK16]
and the protocol by Ghaffari and Parter [GP16] are similar to our work but
were developed independently.

Finally, in Chapter 19 we adapt the memory-based approach to the asyn-
chronous setting. In the asynchronous model, we assume that each node is
equipped with a random clock which ticks according to a Poisson distribution
in expectation once per time unit. (Analogously, one can say that the time
between two ticks has an exponential distribution with parameter λ = 1.)
However, since the Poisson process has the memoryless property, we model the
asynchronous process by a sequence of discrete time steps. At each time step,
one node is selected uniformly at random to perform its tick. As our main
contribution, we show that if the difference between the sizes of the largest two
opinions is at least Ω(c2), where c2 is the size of the second largest opinion, and
k = nO(1/(log logn)2), then our algorithm achieves the best possible run time of
O(logn) assuming a node is allowed to communicate with at most constant
many other nodes per step.

21

IPart I

Information Dissemination

Robert Elsässer and Dominik Kaaser: On the Influence of Graph Density on
Randomized Gossiping. In Proceedings of the 29th IEEE International
Parallel & Distributed Processing Symposium (IPDPS), 2015, pages 521–531.
doi: 10.1109/IPDPS.2015.32.

http://dx.doi.org/10.1109/IPDPS.2015.32

5
Introduction

In this part, we analyze a simple randomized gossiping protocol. While
many authors often refer to gossip protocols when writing about any type
of (randomized) information dissemination protocol, we will in the following
make the distinction between broadcasting, one-to-all communication, and
gossiping, all-to-all communication. Efficient gossip protocols for information
dissemination are applied, e.g., in routing, maintaining consistency in replicated
databases, multicasting, and leader election, see [BT89, FL94, HKP+05].

There are two main approaches to design efficient algorithms for broadcasting
or gossiping. One way is to exploit structural properties of the networks on
which the protocols are deployed on with the aim to design efficient deterministic
schemes [HKP+05]. While the resulting protocols are usually (almost) optimal,
they are often not fault tolerant (note that there are also deterministic schemes
which have polylogarithmic run time on the graphs we consider and are highly
robust, see the work by Haeupler [Hae13]). Another approach is to design
simple randomized algorithms, which are inherently fault tolerant and scalable.
Prominent examples of such algorithms are based on the so-called random
phone call model, which has been introduced by Demers et al. [DGH+87]
and was later analyzed in detail by Karp et al. [KSSV00]. The algorithms in
this model are synchronous, that is, the nodes act in synchronous steps. In
each step every node opens a communication channel to a randomly chosen
neighbor. This channel can then be used for bi-directional communication
to exchange messages between the corresponding nodes. It is assumed that
the nodes may decide which messages they send (they are also allowed to
send none of their messages in some step). Furthermore, nodes are able to
combine several messages to one single packet, which then can be sent through
a channel. Clearly, one question is how to count the message complexity if
several pieces of information are contained in such a packet; we will come back
to this question later.
Karp et al. motivated their work with consistency issues in replicated

25

5 Introduction

databases, in which frequent updates occur. These updates must be dis-
seminated to all other nodes in the network to keep the database consistent.
They analyzed the run time and number of message transmissions produced by
so-called push and pull algorithms w.r.t. one single message in complete graphs.
In order to determine the communication overhead, they counted the number
of transmissions of this message through the links in the network. They argued
that since updates occur frequently nodes have to open communication chan-
nels in each step anyway. Thus, the cost of opening communication channels
amortizes over the total number of message transmissions.

Motivated by the application above, Berenbrink et al. considered the gossiping
problem [BCEG10]. They assume that sending a packet through an open
channel is counted once, no matter how many messages are contained in
this packet. However, nodes may decide not to open a channel in a step,
while opening a communication channel is also counted for the communication
complexity. The first assumption is certainly unrealistic in scenarios, in which
all original messages of the nodes have to be disseminated to all other nodes;
although network coding might overcome the inpracticability of this assumption
in certain applications, see for instance the work by Haeupler [Hae12]. On
the other side, in the case of leader election, aggregate computation such as
computing the minimum or the average, or for consensus the above assumption
might be feasible, since the size of the exchanged messages can asymptotically
be bounded by the size of a single message.
The algorithms developed so far in the random phone call model use so-

called push and pull transmissions. As described above, the nodes open
communication channels to randomly selected neighbors. If a message is sent
from the node which called the neighbor and initiated the communication,
then we talk about a push transmission w.r.t. that message. If the message is
transmitted from the called node to the node that opened the channel, then
we talk about a pull transmission.

As already stated in Chapter 4, an important question is, whether the
results known for complete graphs also hold in sparse networks with very good
expansion and connectivity properties. Such networks naturally arise in certain
real world applications such as peer-to-peer systems [BW01, Gnu]. While it
is known for broadcasting that the performance of push-pull algorithms in
complete graphs cannot be achieved in random graphs of small or moderate
degree [Els06], this seems not to be the case w.r.t. gossiping. As we show in the
following chapters, the performance of the algorithms developed in [BCEG10]
can be achieved in random graphs as well.

5.1 Related Work

A huge amount of work has been invested to analyze information dissemination
in general graphs as well as some special network classes. In this part, we only
concentrate on randomized protocols that are based on the random phone call

26

5.1 Related Work

model. This model has been introduced by Demers et al. [DGH+87] along
with a randomized algorithm that solves the problem of mutual consistency in
replicated databases.
Many papers analyze the run time of randomized broadcasting algorithms

that only use push transmissions. To mention some of them, Pittel [Pit87]
proved that in complete graphs a rumor can be distributed in log2(n) + ln(n) +
O(1) steps. Feige et al. [FPRU90] presented optimal upper bounds for the
run time of this algorithm in various graph classes including random graphs,
bounded degree graphs, and the hypercube.

In their paper, Karp et al. [KSSV00] presented an approach that requires only
O(logn) time and O(n log logn) message transmissions, with high probability,
which is also shown to be asymptotically optimal. This major improvement
is a consequence of their observation that an algorithm that uses only pull
steps is inferior to the push approach as long as less than half of the nodes
are informed. After that, the pull approach becomes significantly better. This
fact is used to devise an algorithm that uses both, push and pull operations.
Additionally, a termination mechanism is introduced.

The random phone call model, as well as some variants of it, have also been
analyzed in other graph classes. We mention here the work of Chierichetti et al.
[CLP10] and Giakkoupis [Gia11] who related the run time of push-pull protocols
to the conductance of a graph; or the work of Giakkoupis and Sauerwald
[GS12, Gia14] on the relationship between push-pull and vertex expansion.
To overcome bottlenecks in graphs with small conductance, Censor-Hillel and
Shachnai used the concept of weak conductance to improve the run time of
gossiping [CS12]. Earlier results related randomized information dissemination
to random walks on graphs, see, e.g., [MS06, ES09]. Modifications of the
random phone call model resulted in an improved performance of randomized
broadcasting w.r.t. the communication complexity in random graphs [ES08]
and w.r.t. the run time in the preferential attachment model [DFF11]. We use
the basic idea of these modifications in Chapter 7.
Randomized gossiping in complete graphs has been extensively studied by

Berenbrink et al. [BCEG10]. In their paper, they provided a lower bound
argument that proves Ω(n logn) message complexity for any O(logn) time
algorithm. This separation result marks a cut between broadcasting and
gossiping in the random phone call model. Furthermore, the authors gave two
algorithms at the two opposite points of the time and message complexity
trade-off. Finally, they slightly modified the random phone call model to
circumvent these limitations and designed a randomized gossiping protocol
which requires O(logn) time and O(n log logn) message transmissions.

Chen and Pandurangan [CP12] used gossiping algorithms for computing
aggregate functions in complete graphs, see also [KDG03]. They showed a
lower bound of Ω(n logn) on the message complexity regardless of the run
time for any gossiping algorithm. However, for this lower bound they assumed
a model that is slightly weaker than the one used in this part. In the main

27

5 Introduction

part of their paper, they presented an algorithm that performs gossiping in
O(logn) time using O(n log logn) messages by building certain communication
trees. Furthermore, they also designed gossip protocols for general graphs.
For all these algorithms, they assumed a communication model which is more
powerful than the random phone call model.

Another interesting application of randomized gossiping is in the context of
resilient information exchange. Alistarh et al. [AGGZ10] proposed an algorithm
with optimal O(n) communication overhead, which can tolerate oblivious faults.
For adaptive faults they provided a gossiping algorithm with a communication
complexity of O

(
n log3 n

)
. Their model, however, is stronger than the random

phone call model or some simple variants of it.
Random graphs first appeared in probabilistic proofs by Erdős and Rényi

[ER59]. Much later, they were described in the works by Bender and Canfield
[BC78], Bollobás [Bol80] and Wormald [Wor81b, Wor81a]. Aiello et al. general-
ized the classical random graph model, introducing a method to generate and
model power law graphs [ACL01]. The properties of Erdős-Rényi graphs have
been surveyed by Bollobás [Bol01]. Various properties of random graphs, in-
cluding random regular graphs, were presented by Wormald [Wor99]. In recent
years, random graphs were also analyzed in connection with the construction
and maintenance of large real world networks, see, e.g., the work by Kermarrec
et al. [KMG03].

5.2 Our Results

In this part, we extend the results by Berenbrink et al. [BCEG10] to random
graphs with degree Ω

(
logK n

)
where K ≥ 5 can be an arbitrary constant. In

[BCEG10], the authors first proved a lower bound, which implies that any
address-oblivious algorithm in the random phone call model with run time
O(logn) produces a communication overhead of at least Ω(n logn) in complete
graphs. On the other side, it is easy to design an O(logn)-time algorithm, which
generates O(n logn) message transmissions. The first question is whether in-
creasing the run time can decrease the communication overhead. This has been
answered positively for complete graphs. That is, in [BCEG10] an algorithm
with run time O

(
log2 n/ log logn

)
and message complexity O(n logn/ log logn)

was presented. However, it is still not clear whether this result can be achieved
in sparser graphs as well. One might intuitively think that results obtained
for complete graphs should be extendable to sparse random graphs as well, as
long as the number of time steps is less than the smallest degree. However,
in the related model of randomized broadcasting there is a clear separation
between results achievable in complete graphs and in random graphs of degree
no(1/ log logn), see also [KSSV00, Els06].
In this part, we show that in random graphs one can obtain the same

improvement on the number of message transmissions w.r.t. the algorithms

28

5.3 Model and Notation

studied so far as in complete graphs. In light of the fact that in the slightly
different communication model analyzed by Chen and Pandurangan in their
lower bound theorem [CP12] such an improvement is not even possible in
complete graphs, our result provides evidence for a non-trivial advantage of the
well-established random phone call model, that is, the possibility to improve
the communication overhead by increasing the run time. Furthermore, we will
present a modification of this model – as in [BCEG10] – to derive an O(logn)-
time algorithm, which produces only O(n log logn) message transmissions, with
high probability, and analyze the robustness of this algorithm.
In this part, we will show our first result w.r.t. the configuration model

in Chapter 6, while the second result is proved for Erdős-Rényi graphs in
Chapter 7. Nevertheless, both results can be shown for both random graph
models, and the proof techniques are essentially the same. Here we only present
one proof w.r.t. each graph model. Note that by performing an elaborate case
analysis our results can be extended to random graphs with degree Ω

(
log2+ε n

)
for a small constant ε ≥ 0. If applicable, we will state and show our lemmas in
Chapter 6 for the more general case d = Ω

(
log2+ε n

)
.

In our analysis, we divide the execution time of our algorithms into several
phases as in the case of complete graphs. Although the algorithms and the
overall analysis are in the same spirit as in [BCEG10], we encountered several
differences concerning the details. At many places, results obtained almost
directly in the case of complete graphs required additional probabilistic and
combinatorial techniques in random graphs. Moreover we observed that,
although the overall results are the same for the two graph classes, there are
significant differences in the performance of the corresponding algorithms in
some of the phases mentioned before. This is due to the different structures we
have to deal with in these two cases. To obtain our results, it was necessary
to incorporate these structural differences into the dynamical behavior of the
gossiping algorithms. For the details as well as a high level description of our
algorithms see Chapter 6 and Chapter 7.

5.3 Model and Notation

We investigate the gossiping problem in the random phone call model in which
n players are able to exchange messages in a communication network. In
our first model, we use a Erdős-Rényi random graph G = G(n, p) = (V,E)
to model the network where V denotes the set of players and E ⊆ V × V
is the set of edges. In this model, we have a probability of p that for two
arbitrary nodes v1, v2 ∈ V the edge (v1, v2) exists, independently. Let d denote
the expected degree of an arbitrary but fixed node v. In this part, we only
consider undirected random graphs for which d ≥ logK n for a suitable constant
K ≥ 5. In this model the node degree of every node is concentrated around
the expectation, that is, dv = deg(v) = d · (1± o(1)), with high probability.

29

5 Introduction

We also investigate the so-called configuration model introduced by Bollobás
[Bol80]. We adapt the definition by Wormald [Wor99] as follows. Consider a
set of d · n edge stubs partitioned into n cells v1, v2, . . . , vn of d stubs each. A
perfect matching of the stubs is called a pairing. Each pairing corresponds to
a graph in which the vertices are the cells and the pairs define the edges. A
pairing can be selected uniformly at random in different ways. In particular,
the first stub in the pair can be chosen using any arbitrary rule as long as the
second stub is chosen uniformly at random from the remaining unpaired stubs.
Note that this process can lead to multiple edges and loops. However, with high
probability the number of such edges is a constant [Wor99]. In our analysis we
apply the principle of deferred decisions [MR95]. That is, we assume that at
the beginning all nodes have d stubs which are not yet connected. If a node
chooses a link for communication for the first time in a step, then we connect
the corresponding stub of the node with a free stub in the graph, while leaving
all other stubs as they are.
We furthermore assume that each node has an estimation of n, which is

accurate within constant factors. In each step, every node v is allowed to open
a channel to one of its neighbors denoted by u chosen uniformly at random (in
Chapter 7 we consider a simple modification of this model). This channel is
called outgoing for v and incoming for u. We assume that all open channels are
closed at the end of every step. Since every node opens at most one channel
per step, at most one outgoing channel exists per node.
Each node has access to a global clock, and all actions are performed in

parallel in synchronous steps. At the beginning, each node v stores its original
message mv(0) = mv. Whenever v receives messages, either over outgoing
channels or over incoming channels, these messages are combined together.
That is, v computes its message in step t by successively combining all known
messages together, resulting in mv(t) =

⋃t−1
i=0 m

(in)
v (i), where m(in)

v (i) denotes
the union of all incoming, that is, received, messages over all connections
in a step i (with m

(in)
v (0) = mv). This combined message is used for any

transmission in step t. We will omit the step parameter t and use mv to denote
the node’s message if the current step is clear from the context.

30

6
Traditional Model

In this chapter we present our algorithm to solve the gossiping problem. This
algorithm is an adapted version of fast-gossiping presented by Berenbrink
et al. [BCEG10]. It works in multiple phases, starting with a distribution
process, followed by a random walk phase and finally a broadcasting phase.
These phases are described below. Each phase consists of several rounds
which may again consist of steps. The algorithm uses the following per-node
operations, defined in Table 6.1.

Operation Description

open() open a connection to a randomly chosen neighbor
push(m) send m over the outgoing channel
pull(m) send m over incoming channel(s) (see [KSSV00])
pushpull() a combination of push and pull
receive() receive the messages from all open channels
close() close all open channels

Table 6.1: per-node communication operations for gossiping algorithms

In Phase II of Algorithm 6.1 we require each node to store messages associated
with incoming random walks in a queue qv which we assume to support an
add operation for adding a message at the end and a pop operation to remove
the first message. The current queue status can be obtained via the empty
operation which yields a Boolean value indicating whether the queue is empty
or not. Additionally, we assume that each incoming message m in the second
phase phase has a counter moves(m) attached that indicates how many real
moves it has already made. This counter can be accessed using the moves
operation and is described in more detail in the random walks section. Above
operations are summarized in Table 6.2.

31

6 Traditional Model

Algorithm FastGossiping(G)
Phase I

for step t = 1 to 12 logn/ log logn do
at each node v do in parallel

open();
push(mv); // mv(t) as defined in Section 5.3
mv ← mv ∪ receive();
close();

Phase II
let ` denote a large constant;
for round r = 1 to 4 logn/ log logn do

at each node v do in parallel
with probability `/ logn do

open();
push(mv); // start a random walk
close();

for step t = 1 to 6` logn do
at each node v do in parallel

for each incoming message m′ do
if moves(m′) ≤ cmoves · logn then

qv.add(m′ ∪mv);
mv ← mv ∪m′;

if ¬ empty(qv) then
open();
push(qv. pop());
close();

for each node v do
if ¬ empty(qv) then

v becomes active;

for step t = 1 to 1/2 · log logn do
at each node v do in parallel

if v is active then
open();
push(mv);
close();

if v has incoming messages then
v becomes active;

All nodes become inactive;

Phase III
for t = 1 to 8 logn/ log logn do

at each node v do in parallel
open();
pushpull(mv);
mv ← mv ∪ receive();
close();

Algorithm 6.1: the fast-gossiping algorithm

32

6.1 Phase I – Distribution

Operation Description

qv.add(m) add m at the end of qv
qv.pop() remove and return the first element of qv
qv.empty() return whether the queue is empty or not
moves(m) return the number of moves of a random walk

Table 6.2: queue operations for gossiping algorithms

We now state our first main theorem as follows.

Theorem 1. The gossiping problem can be solved in the random phone call
model on random regular graphs with node degree Ω

(
logK n

)
for a suitable

constant K ≥ 5 in O
(
log2 n/ log logn

)
time using O(n logn/ log logn) trans-

missions, with high probability.

6.1 Phase I – Distribution

The first phase consists of 12 logn/ log logn steps. In every step, each node
opens a channel, pushes its messages, and closes the communication channel.
Clearly, this phase meets the bounds for runtime and message complexity.
Let k ≥ 6 denote a constant. We prove our result with respect to the

configuration model described in Section 5.3. After the first phase, we have
at least logk n informed nodes w.r.t. each message, with high probability. We
analyze our algorithm throughout this chapter with respect to one single
message m and at the end use a union bound to show that the result holds
with high probability for all initial messages.

Definition 1. Let Im(t) be the set of vertices that are informed of message
m in a step t, that is, vertices in Im(t) have received m in a step prior to t.
Accordingly, |Im(t)| is the number of informed nodes in step t. Let Hm(t) be
the set of uninformed vertices, that is, Hm(t) = V \ Im(t).

We now bound the probability that during a communication step an arbitrary
but fixed node opens a connection to a previously informed vertex, that is, the
communication is redundant and thus the message is wasted. Let v denote this
vertex with corresponding message mv.

At the beginning, we consider each connection in the communication network
as unknown, successively pairing new edges whenever a node opens a new
connection (see principle of deferred decisions in Section 5.3). Note, however,
that this is only a tool for the analysis of our algorithm and does not alter the
underlying graph model. We observe that each node has dv communication
stubs with log2+ε n ≤ dv < n. We consider a stub wasted if it was already
chosen for communication in a previous step. Since throughout the entire first

33

6 Traditional Model

phase each node opens at most 12 logn/ log logn channels, there still will be
Θ(dv) free stubs available with high probability. Observe that the number of
stubs that are additionally paired due to incoming channels can be neglected
using a simple balls-into-bins argument [RS98]. If a node chooses a free stub, it
is paired with another free stub chosen uniformly at random from the graph G.

Lemma 2. After the distribution phase, every message is contained in at least
logk n nodes, with high probability, where k ≥ 6 is a constant.

To show Lemma 2 which corresponds to Phase I of Algorithm 6.1 we first
state and show Lemma 3, Lemma 4, Lemma 5, and Lemma 6.

Lemma 3. The probability that an arbitrary but fixed node v opens a connection
to a previously uninformed vertex w.r.t. message m is at least 1−O

(
log−1 n

)
.

Proof. The first phase runs for 12 logn/ log logn steps with the goal to reach
at least logk n informed vertices. We apply the principle of deferred decision
as described in Section 5.3 to bound the number of uncovered (wasted) stubs
that have already been connected. The total number of uncovered stubs at a
node can be bounded by S = O(logn) with high probability applying a simple
balls-into-bins argument [RS98]. Then,

Pr[v chooses a wasted stub] ≤ O(logn)
dv

.

If in step t a free stub is chosen, the probability that the corresponding
communication partner u has already been informed (or will be informed in
exactly the same step) can be bounded by

Pr[u is informed] ≤ d · |Im(t)|
(d− S)n .

Therefore, the probability p′ that v opens a connection to an uninformed
communication partner and thus spreads the message to an uninformed node is

p′ ≥ Pr[v chooses a free stub to u] · Pr[u is uninformed]

which yields for sufficiently large n

p′ ≥
(

1− 1
logn

)
·
(

1− d · logk n
(d− S)n

)
≥ 1−O

(1
logn

)
.

Lemma 4. Let C denote a large constant. After the first T = 4 logn/ log logn
steps, at least C of nodes are informed of message mv with high probability.

Proof. During these first 4 logn/ log logn steps we aim to reach at least C
informed nodes with high probability. Therefore, we have a probability of at
most C/dv that an informed node v opens a connection to another informed

34

6.1 Phase I – Distribution

node and thus causes redundant communication. Furthermore, the probability
that in an arbitrary but fixed step t every communication attempt fails and
every node v ∈ Im(t) performs only redundant communication can also be
upper bounded by C/d.

We define an indicator random variable Xi as

Xi =

1 if |Im(i+ 1)| ≥ |Im(i)|+ 1
0 otherwise

which we sum up to obtain the number of informed nodes X =
∑T
i=1Xi. We

then bound the probability that more than C steps fail, that is, the number of
successful transmissions X is smaller than C, as

Pr[X ≤ C] ≤
C∑
i=0

(
T

i

)
·
(

1− 1
d

)i
·
(
C

d

)T−i

<
C∑
i=0

(4 logn · e
log logn · i

)i
·
(

C

log2+ε n

) 4 logn
log logn−i

� 1
n2

where in the second inequality we used that
(T
i

)
≤
(
T ·e
i

)i
.

Lemma 5. Let t ∈ [4 logn/ log logn, 12 logn/ log logn] denote an arbitrary
but fixed step. Then |Im(t + 1)| ≥ 1.5 · |Im(t)| with probability at least 1 −
log−1−Ω(1) n.

Proof. According to Lemma 4 we have C ≤ |Im(t)| ≤ logk n where C denotes
a large constant. In each step, every node opens a connection to a randomly
chosen communication partner. Let c denote a constant. According to Lemma 3,
this attempt to inform a new node fails with a probability smaller than c/ logn.
We now define the indicator random variable Xi for vi ∈ Im(t) as follows.

Xi =

1 if vi opens a connection to u ∈ Im(t)
0 otherwise.

The aggregate random variable X =
∑|Im(t)|
i=1 Xi with expected value E[X] ≤

c · |Im(t)|/ logn represents the total number of failed communication attempts.
Clearly, we get |Im(t+1)| = 2|Im(t)|−X. Therefore, we upper bound X, using
Equation 12 from [HR90] as follows:

Pr

[
X ≥ 1

2 |Im(t)|
]
≤
(2c

logn · 2
(

1− c

logn

))|Im(t)|/2

≤
(4c

logn

)|Im(t)|/2

35

6 Traditional Model

We can now apply the lower bound for the number of informed nodes, |Im(t)| ≥
C, and obtain for large n

Pr[|Im(t+ 1)| ≥ 1.5 · |Im(t)|] ≥ 1− log−C/2+1 n .

Lemma 6. At least 4 logn/ log logn attempts out of the 8 logn/ log logn last
steps in Phase I succeed such that |Im(t+1)| ≥ 1.5·|Im(t)|, with high probability.
That is, half of the steps lead to an exponential growth.

Proof. As of Lemma 5, the growth in each step can be lower bounded by
|Im(t + 1)|/|Im(t)| ≥ 1.5 with probability at least 1 − log−1−Ω(1) n. We now
define the indicator random variable Xi as

Xi =

1 if |Im(i+ 1)| < 1.5 · |Im(i)|
0 otherwise.

We sum up these indicator random variables and obtain the random variable
X =

∑8 logn/ log logn
i=1 Xi which represents the number of steps that fail to inform

a sufficiently large set of new nodes. Again, we use Equation 12 from [HR90]
to bound X as follows.

Pr

[
X ≥ 4 logn

log logn

]
≤
(

4
log1+Ω(1) n

(
1− 1

log1+Ω(1) n

)) 4 logn
log logn

� n−3

We now combine these results to give a proof for Lemma 2 which concludes
the first phase.

Proof of Lemma 2. Since each messagem starts in its original node, we initially
have |Im(0)| = 1. We conclude from Lemma 6 that with high probability in at
least 4 logn/ log logn steps the number of nodes informed of m increases by
a factor of at least 1.5 as long as |Im(t)| ≤ logk n. Thus, we have with high
probability ∣∣∣∣Im(12 logn

log logn

)∣∣∣∣ ≥ min
{

logk n, 1.5
4 logn

log logn

}
= logk n .

We apply a union bound over all messages and the lemma follows.

6.2 Phase II – Random Walks

After the first phase, each message is contained with high probability in at least
logk n nodes, where k ≥ 6 is a constant. We aim to reach n · 2− logn/ log logn

informed nodes for each message in the second phase and therefore assume
for any message m and any step t in Phase II that logk n ≤ |Im(t)| ≤ n ·
2− logn/ log logn.

36

6.2 Phase II – Random Walks

At the beginning of Phase II a number of nodes start so-called random walks.
If a random walk arrives at a node in a certain step then this node adds its
messages to the messages contained in the random walk and performs a push
operation, that is, the random walk moves to a neighbor chosen uniformly at
random. This is done for O(logn) steps. To ensure that no random walk is
lost, each node collects all incoming messages (which correspond to random
walks) and stores them in a queue to send them out one by one in the following
steps. The aim is to first collect and then distribute messages corresponding
to these walks. After the random walk steps all nodes containing a random
walk become active. A broadcasting procedure of 1/2 · log logn steps is used
to increase the number of informed nodes by a factor of Θ

(√
logn

)
. The entire

second phase runs in 4 logn/ log logn rounds which correspond to the outer
for-loop in Phase II of Algorithm 6.1. Each round consists of O(logn) steps.
Thus, the run time of this phase is in O

(
log2 n/ log logn

)
.

Note that although random walks carry some messages, we assume in our
analysis that the nodes visited by the random walks do not receive these
messages from the random walks. That is, the nodes are not necessarily
informed after they were visited by a random walk and thus are not accounted
to Im.
In the following, we consider an arbitrary but fixed round r that belongs

to the second phase with 1 ≤ r ≤ 4 logn/ log logn. Whenever we use the
expression Im(r), we mean the set of informed nodes at the beginning of the
corresponding round r, even though the informed set may be larger in some
step of this round.

At the beginning of each round, every node flips a coin. With a probability
of `/ logn, where ` denotes a large constant, the node starts a random walk.
We first need to bound the total number of random walks which are initiated.
As their number does not depend on the underlying graph, we can use the
result of [BCEG10] for the number of random walks and obtain Θ(n/ logn)
random walks with high probability. Therefore, the bounds on the message
complexity of O(n logn/ log logn) are met during the random walks phase. In
the following we only consider random walks that carry an arbitrary but fixed
message m.
We observe that these random walks are not independent from each other,

since a random walk w incoming at node v is enqueued into a queue qv.
Therefore, w may be delayed before it is sent out again by v and this delay is
based on the number of (other) random walks that are currently incident at
node v. If v eventually sends out the random walk w, we say w makes a move.
It is now an important observation that the actions of the random walks in a
specific step are not independent from each other. Their moves, however, are.

Now a question that arises naturally is whether the number of moves made
by an arbitrary but fixed random walk w is large enough to mix. This question
is covered in Lemma 7, where we will argue that the number of moves taken
by every random walk is Ω(logn) and therefore larger than the mixing time

37

6 Traditional Model

of the network. In the following lemmas, especially in Lemma 8, we will also
require that the random walks are not correlated, which clearly is not true
if we consider the steps made by the algorithm. However, the moves of the
random walks are independent from each other. That is, after mixing time
moves, the node that hosts random walk w after its i-th move is independent
from the nodes that host any other of the random walks after their i-th moves.
We furthermore require, e.g., in Lemma 13, that after some mixing steps the
random walks are distributed (almost) uniformly at random over the entire
graph. This is enforced as we stop every random walk once it has reached
cmoves · logn moves for some constant cmoves. Note that we implicitly attach
a counter to each random walk which is transmitted alongside the actual
message. In the first inner for-loop in Phase II of Algorithm 6.1 we then refuse
to enqueue random walks that have already made enough moves.
Note that starting with Lemma 8, when we talk about random walks in a

certain step i we always mean each random walk after its i-th move. This
does not necessarily have to be one single step of the algorithm, and the
corresponding random walks are scattered over multiple steps. Since, however,
the moves of the random walks are independent from each other, the actual
step can be reinterpreted in favor of the random walk’s movements. What
remains to be shown is that every random walk makes indeed Ω(logn) moves.
This is argued in the following lemma.

Lemma 7. The random walks started in Phase II of Algorithm 6.1 make
Ω(logn) moves, with high probability.

Proof. At the beginning we fix one single random walk r, and let P be the
sequence of the first logn/4 nodes visited by this random walk, whenever r is
allowed to make a move. Note that some nodes in P may be the same (e.g.,
the random walk moves to a neighbor v of some node u, and when the random
walk is allowed to make a move again, then it jumps back to u). Clearly, the
number of random walks moving around in the network is O(n/logn), with
high probability. For simplicity, let us assume that there are exactly n/logn
random walks (a few words on the general case are given at the end of this
proof). We now consider the number of vertices in the neighborhood N(v) of a
vertex v which host a random walk at some time step i. We show by induction
that for each time step 1 ≤ i ≤ logn/4 and any node v with probability
1− 2i/n3 it holds that

1. The number of vertices hosting at least one random walk is at most
d

logn

(
1 + 2i

logn

)
.

This set is denoted by N1(v).
2. The number of vertices hosting at least two random walks is at most

d
log2 n

(
1 + 2i

logn

)
.

This set is denoted by N2(v).
3. The number of vertices hosting three or more random walks is at most

38

6.2 Phase II – Random Walks

di
log3 n

.
This set is denoted by N3(v).

For the proof we condition on the event that there are at most 4 circles
involving v, the nodes of the first neighborhood of v, and the nodes of the
second neighborhood of v. Note that this event holds with very high probability
for a large range of d, that is, d ≤ nα for some α constant but small, see, e.g.,
[DFS09], [BES14], or for random regular graphs a similar proof done by Cooper,
Frieze, and Radzik [CFR09]. These edges can be treated separately at the end
and are neglected for now. Moreover, in the configuration model it is possible
to have multiple edges or loops. However, for this range of degrees there can
be at most constantly many, which are treated as the circle edges mentioned
above at the end. We use ccircle-edges to denote the constant for the number of
multiple edges and circle edges. For the case d > nα, different techniques have
to be applied, however, a similar proof as in the complete graph case can be
conducted. For now, we assume that d ≥ log5 n. For random regular graphs of
degree d ∈ [log2+ε n, log5 n] the proof ideas are essentially the same, however,
at several places an elaborate case analysis becomes necessary.

Now to the induction. In the first time step, the hypothesis obviously holds,
that is, each node starts a random walk with probability 1/ logn, independently.
Assume now that the induction hypothesis holds for some time step i, and we
are going to show that it also holds for step i+ 1. Note that the assumption
holds in the neighborhood of each node, and thus, also in the neighborhoods of
the nodes of N(v). We start by showing claim 3. In each step, every node of
N1(v) will release a random walk. There are d vertices in N(v), and di/ log3 n
nodes with at most 3 random walks. A node of N(v) \N2(v) becomes an N3(v)
node with probability at most(

d
logn

(
1 + 2i

logn

)
3

)
· 1
d3 . (6.1)

(Note that above equation is an approximation of the more exact calculation
involving the sum

∑|N1(w)|
i=2

(|N1(w)|
3

)(1
d

)3(
1− 1

d

)(|N1(w)|−i)
where w is a neighbor

of v. This sum can be approximated efficiently by using bounds on the tail of
the binomial distribution. We work here with the simpler expression in (6.1).)
Therefore the expected value of these nodes is at most

E[Z] =
(

d
logn

(
1 + 2i

logn

)
3

)
· 1
d3 · d .

Since we only consider the nodes which are not involved in any cycles and do
not have multiple edges each node w′ in the second neighborhood of v sends
a random walk to the corresponding neighbor in N(v) independently of the
other nodes in the second neighborhood. Thus we can apply Chernoff bounds
and obtain that the number of the nodes in N(v) which receive a random walk
is E[Z](1 + o(1)).

39

6 Traditional Model

An N2(v) node becomes an N3(v) node with probability(
d

logn

(
1 + 2i

logn

)
2

)
· 1
d2 .

Again, since the neighborhoods of the different nodes are disjoint (up to at
most 4 edges, which can be treated separately and therefore are neglected in
the future), we may apply Chernoff bounds, and obtain an upper bound for
N3(v) as follows.(

d
logn

(
1 + 2i

logn

)
3

)
· 1
d3 · d · (1 + o(1))+(

d
logn

(
1 + 2i

logn

)
2

)
· 1
d2 ·

d

log2 n
·
(

1 + 2i
logn

)
· (1 + o(1))+

|N3(v)|+ ccircle-edges

Recall that we initially neglected circle edges and multiple edges. In the worst
case, the nodes incident at these edges send a random walk to N3(v) (as
well as to N2(v) and N1(v)) in every step and therefore the last expression
ccircle-edges denotes a constant for these additional incoming messages. Noting
that furthermore i < logn/4 we obtain that N3(v) ≤ d(i+ 1)/log3 n in the
next step, with high probability.

Concerning the N2(v) nodes, a node being in N(v)\N2(v) becomes an N2(v)
node with probability (

d
logn

(
1 + 2i

logn

)
2

)
· 1
d2 .

Similarly, a node in N2(v) will still remain in N2(v) with a probability of
1

logn

(
1 + 2i

logn

)
. Applying again Chernoff bounds for both cases separately, we

obtain the result. Additionally, we add the N3(v) nodes to the N2(v) nodes,
and a similar calculation as above shows that the given bound is not exceeded.
Now we concentrate on nodes in N1(v). A node being in N(v) \ N2(v)

becomes (or remains) an N1(v) node with probability

1
logn

(
1 + 2i

logn

)
.

Note that there can be at most d nodes in this set. Applying Chernoff bounds
as above and adding the N2(v) nodes to this set, we obtain the upper bound.

Now, we know that every neighborhood N(v) has at most d
logn

(
1 + 2i

logn

)
nodes which possess at least one random walk in step i, with high probability.
This implies that in each time step, the number of random walks sent to v is a
random variable which has a binomial distribution with mean

1
logn

(
1 + 2i

logn

)
≤ 3

2 logn .

40

6.2 Phase II – Random Walks

That is, if we denote by Xv this random variable then Xv can be modeled by
the sum of 3d/2 logn Bernoulli random variables with success probability 1/d.
Thus, within logn/4 steps, v collects in total at most X random walks, where

Pr

[
X >

3
4 · c · logn/ log logn

]
≤

 e
c logn

log logn−1(
c logn

log logn

) c logn
log logn


3
4

≤ 1
n5 ,

if the constant c is large enough. This also implies that at any node, there will
be no more than c logn/log logn many random walks for some proper c, and
hence, if a random walk arrives, it is enough to consider the last c logn/log logn
steps. That is, when a random walk arrives to a node, the number of random
walks can be represented by the sum of c logn/log logn independent random
variables Xv (as described above) with binomial distribution having mean
O(1/logn) each. The probability above is an upper bound, and this bound
is independent of the distribution of the random walks among the vertices
(conditioned on the event that the induction hypotheses 1, 2, and 3 hold, which
is true with very high probability).
Consider now some time steps t1, t2, . . . , ti, . . . which denote movements of

the random walk r from one vertex to another one. Whenever r makes a move
at some time ti, it has to wait for at most

ti∑
j=ti− c logn

log logn+1

Xj (6.2)

steps, where Xj is a random variable having binomial distribution with mean
O(1/logn). One additional step after this waiting time r will make a move. If
a random walk leaves a node twice, at time ti and tj respectively (with ti < tj),
then we consider the sum in (6.2) from max{tj − c logn/log logn+ 1, ti + 1}.
Observe that ti is a random variable that depends on ti−1 and the random
variable for above waiting time. In order to have

t∑
i=1

 ti∑
j=ti− c logn

log logn+1

Xj(ti) + 1

 = logn
4 (6.3)

with some probability at least 1/n2, t must be Ω(logn) where Xj(t) is a random
variable with the same properties as Xj described above. This implies that
within logn/4 steps, r makes Ω(logn) moves, with high probability. This
holds, since

Pr

 t∑
i=1

ti∑
j=ti− c logn

log logn+1

3d
2∑

k=1
Xijk ≥

logn
4

 = 1
nω(1)

41

6 Traditional Model

for t = O(logn). The sum
∑ 3d

2
k=1Xijk represents the random variable Xj(ti)

(see above, where Xijk is a Bernoulli random variable with success probability
1/d) and the second sum represents the inner sum from (6.3). Observe that
above sum represents an upper bound on the sum of the random walks that
random walk r meets when moving from one node to another according to the
sequence P defined at the beginning. That is, the sum gives the time r has to
wait at the nodes without making a move.

Note that in the proof we showed that if at the beginning there are n/logn
randomly chosen nodes starting a random walk, then each random walk makes
at least Ω(logn) moves with high probability. If we start ` · n/logn random
walks, then the proof can be adapted accordingly so that Ω(logn) moves are
also performed by each random walk, with high probability. (The calculations
become a bit more complex, however.) Noting that the eigenvalues of the
transition matrix of these graphs are inverse polynomial in d, the random walks
are well mixed.

Lemma 8. During the Θ(logn) steps that follow the coin flip, Im(r) is visited
by random walks at least Ω(|Im(r)|) times, with high probability.

Proof. Let m denote an arbitrary but fixed message and Im(r) the correspond-
ing set of vertices that are informed of m at the beginning of a round r.
Depending on the coin flip each node starts a random walk with probability
`/ logn and therefore we have a total number of random walks in Θ(n/ logn).
Let X denote the random variable for the number of random walks that cur-
rently reside in Im(r) in an arbitrary but fixed step of round r. In expectation
we have E[X] = |Im(r)| · `/ logn such random walks. We use Chernoff bounds
on X and obtain that

Pr

[
|X − E[X]| > E[X]

logn

]
≤ n

−Ω
(
|Im(r)|
log3 n

)
.

Therefore, we conclude that this number of random walks is concentrated
around the expected value with high probability and thus is in Θ(|Im(r)|/ logn).
Since these random walk moves are not correlated and choose their next hop
uniformly at random we conclude that in any such step the number of random
walks that reside in Im(r) is in Θ(|Im(r)|/ logn) with high probability. Using
union bounds over all Θ(logn) steps following the coin flip we conclude that
there are Θ(|Im(r)|) random walk visits in the set of informed vertices Im(r)
in these Θ(logn) steps, with high probability.

Note that a rigorous analysis of the behavior of similar parallel random walks
on regular graphs has been already considered by Becchetti et al. [BCN+15b].
Furthermore, see also the work by Becchetti et al. [BCN+15a] for a similar
analysis on the complete graph.
These Θ(|Im(r)|) random walks do not necessarily need to be distinct. It

may happen that a single random walk visits the set Im(r) multiple times, in

42

6.2 Phase II – Random Walks

the worst case up to Θ(logn) times. We therefore have to give bounds the
number of random walks that visit Im(r) only a constant number of times.

We now distinguish two cases. Let κ denote a large constant. In the following,
we consider only sparse random graphs with expected node degree d for which
log2+ε n ≤ d ≤ logκ n. We observe that if d ≤ logκ n the informed set consists
of several connected components, which we call regions, that have a diameter
of at most O(log logn) each and a distance between each other of at least
Ω(log logn) (see Lemma 13).

Let v denote an arbitrary but fixed vertex and let T (v) denote the subgraph
induced by nodes that can be reached from v using paths of length at most
O(log logn). It has been shown in Lemma 4.7 from [BES14] that T (v) is a
pseudo-tree with high probability, that is, a tree with at most a constant
number of additional edges. Therefore, we can assign an orientation to all
edges of T (v) in a natural way, pointing from the root node v towards the leafs.
Thus, any edge in T (v) is directed from v1 to v2 if v1 is in at most the same
level as v2. We consider edges violating the tree property with both nodes on
the same level as oriented in both ways. Whenever a random walk takes a step
that is directed towards the root of the tree, we speak of a backward move.

Lemma 9. Assume d ≤ logκ n. An arbitrary but fixed random walk leaves the
set of informed vertices Im(r) to a distance in Ω(log logn) and does not return
to Im(r) with a probability of at least 1− log−2 n.

To show Lemma 9 we first introduce and show Lemma 10 and Lemma 11.

Lemma 10. Assume d ≤ logκ n. Any random walk originating in a node of
T (v) takes in the first 2 log logn steps only a constant number of backward
moves with probability at least 1− log−3 n.

Proof. We consider an arbitrary but fixed random walk w that is informed
with mv, that is, it carries mv, and focus on the first log logn steps after w
was informed for the first time. Let Xi denote the random variable for the
orientation of the edge taken by w in the i-th step, defined as

Xi =

1 if w takes a back edge in step i
0 otherwise.

From the pseudo-tree-property of T (v) we can conclude that the probability of
w using a back edge is at most O(1/d), since every node has one edge to its
parent and additionally at most a constant number of edges that are directed
backwards.

Let c ≥ 3 denote a constant. We define the random variable X =
∑log logn
i=1 Xi

for the number of back edges taken by w in 2 log logn steps with expected
value E[X] ≤ O(log logn/d). Since we can assume that X has a binomial
distribution we can directly derive the probability that more than a constant

43

6 Traditional Model

number of c steps taken by w are backward steps using
(n
k

)
≤
(
n·e
k

)k as follows.

Pr[X ≥ c]

=
2 log logn∑

i=c

(
2 log logn

i

)
·
(O(1)

d

)i
· (1− o(1))2 log logn−i

<
2 log logn∑

i=c

(2 log logn · e
i

)i
·
(O(1)

d

)i

<
2 log logn∑

i=c

(O(log logn)
i ·
√
d

)i
·
(1√

d

)i
≤ O(log logn) ·

(O(log logn)√
d

)c
·
(1√

d

)c
< log−c n ≤ log−3 n

In the following we consider random walks that are more than log logn steps
away from the set of informed nodes.

Lemma 11. Assume d ≤ logκ n. The probability that a random walk does not
return to an informed region T (v) in O(logn) steps once it has a distance to
the region that is greater than log logn steps is at least 1− log−3 n.

Proof. Let w denote an arbitrary but fixed random walk and let a denote a
constant. We use a Markov chain to model and analyze the behavior of the
random walk w with respect to its distance to Im. Let X denote a random
variable for the number of steps w takes backward. Because of the pseudo-tree
property the probability that the random walk moves backward can be bounded
by p′ = O(1/d) for any node with distance O(log logn) to the root. Thus, the
probability that w takes τ backward steps in a total of a logn tries can be
bounded by

Pr[X = τ] ≤
(
a logn
τ

)(4
log2 n

)τ(
1− 4

log2 n

)a logn−τ

<

(
a logn
τ

)(4
log2 n

)τ

which gives using
(n
k

)
≤
(
n·e
k

)k
Pr[X = τ] <

(
ea logn

τ

)τ(4
log2 n

)τ
=
(4ea
τ logn

)τ
.

44

6.2 Phase II – Random Walks

We now consider only those random walks that have a distance larger than
log logn to the root node of the local informed tree. Note that there remains a
safety belt around the informed set, since the broadcasting procedure performed
by each random walk at the end of the round (see last For-loop in Phase II
of Algorithm 6.1) builds up a tree with height at most 1/2 · log logn. We
investigate τ = 1/2 · log logn, the distance to cross this safety belt, and observe

Pr[X = τ] ≤
(1

logn

)log logn/2

and therefore

Pr[X ≥ τ] <
a logn∑

τ=log logn/2

(4ea
τ logn

)τ

< (a logn− log logn/2)
(1

logn

)log logn/2

≤ log−3 n .

We are now ready to prove Lemma 9.

Proof of Lemma 9. From Lemma 10 and Lemma 11 we conclude that with
probability at least

1−
(

1− 1
log3 n

)(
1− 1

log3 n

)
≥ 1− log−2 n

an arbitrary but fixed random walk w leaves the set of informed vertices
to some distance in O(log logn) and does not return. Together, this yields
Lemma 9.

We will show in Lemma 13 that the distance between the informed regions
is at least Ω(log logn). Thus we can show Lemma 12 using the following
definition.

Definition 2 (Safe Area). A safe area is a set of nodes that are uninformed
and have distance at least log logn to any informed node.

Lemma 12. Assume d ≤ logκ n. The number of random walks that visit Im(r)
at most a constant number of times is Θ(|Im(r)|) with high probability.

Proof. Let c denote a constant. We examine steps s ∈ [logn, 2 logn] after the
coin flip. In Lemma 8 we showed that the number of random walks visits in
the informed set Im(r) is in Θ(|Im(r)|) with high probability. Let W denote
this number. Let furthermore Q be the set of random walks that visit Im(r)
at most a constant number of c times and let P be the set containing all the
other random walks. The inequality

W ≤ c · |Q|+ logn · |P |

45

6 Traditional Model

holds since the random walks in Q hit Im(r) at most c times, and the random
walks in P at most logn times, respectively. The probability that a random
walk does not leave the set of informed vertices to a distance of log logn can
be bounded by log−3 n according to Lemma 10. Furthermore, we need to show
that with probability log−2 n the random walk hits any other informed region
at most a constant number of times. This follows from the idea of a safety belt
as described in the proof of Lemma 11, where we observed that the probability
that a random walk returns through this region of distance 1/2 · log logn to
any informed node can be bounded by log−3 n. A simple union bound over
all Θ(logn) steps gives a probability of log−2 n that a random walk hits an
informed node.

It is crucial that in above analysis we regard only informed nodes that arose
from random walks broadcasting in a safe area according to Definition 2, thus
giving us above setup of informed balls, safety belts and long distances between
informed regions. We show these properties in Lemma 13. Therefore, we can
bound the probability that an individual random walk visits Im(r) more often
than a constant number of c times by log−2 n

We now bound the number of random walks in P , that is, the number of
random walks that return more often than a certain constant number of c
times. Let the indicator random variable Xi be defined for a random walk wi
as

Xi =

1 if wi returns more often than c times
0 otherwise.

The random variable X = |P | =
∑W
i=1Xi describes the number of random

walks that return more often than c times. The expected value of X can be
bounded by E[X] ≤W · log−2 n. Since all random walks are independent we
apply Chernoff bounds and obtain for sufficiently large n

Pr

[
X ≥

(
1 + 1

logn

)
E[X]

]
≤ e−

Θ(|Im(r)|)
3 log4 n ≤ n−ω(1) .

Therefore, with high probability

W ≤ c · |Q|+ logn · |P |

≤ c · |Q|+ logn ·
(

1 + 1
logn

)
· W

log2 n

and thus

c · |Q| ≥W ·
(

1−
(1

logn + 1
log2 n

))
which gives |Q| = Θ(W). Since W = Θ(|Im(r)|) we finally obtain that |Q| =
Θ(|Im(r)|).

Lemma 13. Assume d ≤ logκ n. The number of random walks that terminate
in a safe area is in Θ(|Im(r)|).

46

6.2 Phase II – Random Walks

Proof. LetW denote the number of random walks. Each random walk performs
at the end O(logn) mixing steps. Thus, the random walks are distributed
(almost) uniformly at random over the entire graph. For the analysis, we
now proceed as follows. We uncover one random walk after another, thereby
omitting random walks that stopped too close to another previously uncovered
random walk. For each of these steps, the probability punsafe that a random
walk ends up in an unsafe area can be bounded as follows.

punsafe ≤
|Im(r)|dlog logn

n
≤ logκ log logn n

2logn/ log logn

We define for every random walk wi an indicator random variable Xi as

Xi =

1 if wi ends in an unsafe area
0 otherwise

and bound the random variable X =
∑W
i=1Xi representing the number of

random walks that end within an unsafe area. The expected number of these
walks is E[X] = punsafeW . Since all random walks are independent, applying
Chernoff bounds yields for large n

Pr

[
X ≥

(
1 + 1

logn

)
E[X]

]
≤ e−

E[X]
3 log2 n ≤ n−ω(1) .

Therefore, there are Θ(|Im(r)|) random walks in safe areas with high probability.

Lemma 14. Assume d > logκ n. A random walk visits the set Im(r) at most
a constant number of times with probability at least 1− log−2 n. Furthermore,
the number of random walks that visit the set Im(r) a constant number of times
is Θ(|Im(r)|) with high probability.

Proof. Since our algorithm runs for at most O
(
log2 n/ log logn

)
time, each

node has during the second phase at least Ω(d) free stubs available. Therefore
we bound the probability that in step t an arbitrary but fixed random walk w
located at node v opens an already used stub or connects to a node u in the
informed set Im(t) as follows.

Pr[v opens a used stub] ≤ O
(
log−κ+2

)
Pr[u ∈ Im(t)] ≤ |Im(t)| · d/

(
n
(
d− log2 n

))
Therefore, we obtain a probability p′ that an unused stub is chosen and
the corresponding communication partner was not previously informed of
p′ > 1 − log−3 n. We apply union bounds over all random walk steps and
observe that with probability p′ > 1− log−2 n a random walk does not hit any
other informed node.

47

6 Traditional Model

To show the second part of Lemma 14 we analyze the random walks phase
from the following point of view. We know that with probability at most log−2 n
a random walk hits the informed set. Therefore, we consider the experiments
of starting one random walk after another. Each of these trials fails with at
most above probability. However, the trials are negatively correlated, since we
omit those random walks that interfere with the informed set and thus also
with another random walk. Note that we only regard those random walks as
valid that do not interfere with the informed set at least once and only choose
communication stubs that have not been previously selected.
Since the correlation is negative we can apply Chernoff bounds on the the

number of random walks that fail. Let Xi denote an indicator random variable
for the i-th random walk, defined as

Xi =

1 if the i-th random walk fails
0 otherwise.

Let furthermore X be the number of random walks that fail, defined as
X =

∑W
i=1Xi. From Lemma 8 we obtain that the total number of random

walks visits in Im(t) is in Θ(|Im(t)|). The expected value of X can be bounded
by E[X] ≤W · log−2 n = o(|Im(t)|). We show that X is concentrated around
its expected value as follows.

Pr

[
X ≥

(
1 + 1

logn

)
E[X]

]
≤ e−

E[X]
3 log2 n ≤ n−ω(1)

Therefore we have only o(|Im(t)|) random walks that exhibit undesired behavior
with high probability and thus the lemma holds.

Lemma 15. The broadcasting procedure during the last 1/2 log logn steps of
a round r in Phase II informs Θ

(
|Im(r)| ·

√
logn

)
nodes, with high probability.

Proof. Let w denote an arbitrary but fixed random walk and, again, let κ
denote a large constant. We distinguish the following two cases to show that
the probability that a node ui opens a connection to an already informed node
can be bounded for both, sparse and dense random graphs by log−2 n.

Case 1: d ≤ logκ n. Each random walk operates in its own safe area as
described in Lemma 13. That means, we only consider random walks that
have a distance of at least log logn between each other. Therefore, in a
broadcast procedure of at most 1/2 · log logn steps no interaction between the
corresponding broadcast trees can occur. Let ui be the i-th node with respect
to a level-order traversal of the message distribution tree of nodes informed by
an arbitrary but fixed random walk. Let furthermore Xi denote an indicator
random variable for the connection opened by ui defined as

Xi =

1 if ui opens a back connection
0 otherwise.

48

6.2 Phase II – Random Walks

The claim follows from the pseudo-tree structure of the local subgraph, since
every node has at most a constant number of edges directed backwards and
furthermore we only regard random walks in a safe area, that is, random walks
with a distance of log logn steps between each other. Therefore, the probability
probability that the node ui opens a connection to an already informed node
can be bounded by O(1/d) ≤ log−2 n.

We denote the random variable for the number of nodes that open backward
connections as X and observe that X ≤

√
logn since the number of steps is

1/2 log logn. Using above indicator random variable we set X =
∑
Xi with

expected value E[X] ≤ log−3/2 n. Let c ≥ 3 denote a constant. Since we can
assume that X has a binomial distribution we can bound the probability that
more than a constant number of c nodes open backward connections directly
by Pr[X ≥ c] ≤ log−3 n as follows.

Pr[X > c]

=

√
logn∑

i=c+1

(√
logn
i

)(1
log2 n

)i(
1− 1

log2 n

)√logn−i

≤

√
logn∑

i=c+1

(√
logn · e
i

)i(1
log2 n

)i(
1− 1

log2 n

)√logn−i

≤

√
logn∑

i=c+1

(
e

i log3/2 n

)i(
1− 1

log2 n

)√logn−i

≤
(√

logn− c− 1
)(e

(c+ 1) log3/2 n

)c+1

≤ 1
logc n ≤ log−3 n .

In the worst case these c nodes are the c topmost nodes of the message
distribution tree and the corresponding branches of this tree are lost. However,
for a constant c the resulting informed set is still in Θ

(√
logn

)
.

Case 2: d > logκ n. We consider the number of connection stubs that are
available at an arbitrary but fixed node v and observe that the probability
that v opens an already used stub can be bounded by

Pr[v opens a used stub to u] ≤ O
(
log−κ+2 n

)
,

that is, the total number of connections opened over the number of available
stubs. Furthermore, we bound the probability that the target stub belongs to
a node in the informed set as

Pr[u is informed] ≤ |Im(t)| · d/
(
n
(
d− log2 n

))
.

Therefore, the probability that either a previously used stub is opened or
that the target has already been informed can be bounded for sufficiently

49

6 Traditional Model

large n by log−3 n. We apply union bounds and conclude that each random
walk end informs a set of size

√
logn after 1/2 log logn steps with probability

1− log−2 n.

Both cases. We apply Chernoff bounds on the number of random walks that
do not manage to build up a sufficiently large informed set using broadcasting.
In the first case all random walks are clearly uncorrelated, since they live within
their own safe area. For the second case, we analyze the random walks one
after another as individual trials in our experiment. Whenever a random walk
fails to spread its message, we completely remove the entire random walk for
our analysis. We therefore have probabilities that are negatively correlated
which allows us to apply Chernoff bounds.

Let X ′i denote an indicator random variable for a random walk wi defined as

X ′i =

1 if the random walk wi fails broadcasting
0 otherwise.

Let furthermore X ′ =
∑W
i=1X

′
i denote the random variable for the number

of random walks that fail during the broadcasting steps with expected value
E[X ′] ≤ W/ log2 n where W is the total number of random walks. We show
that X ′ is concentrated around the expected value using Chernoff bounds.

Pr

[
X ′ ≥

(
1 + 1

logn

)
E
[
X ′
]]
≤ e−

E[X′]
3 log2 n ≤ n−ω(1)

Since this result holds with high probability, we have a set of informed nodes
of size |Im(r + 1)| = Θ

(
|Im(r)| ·

√
logn

)
and thus the claim holds.

From Lemma 15 we obtain that the set of informed vertices grows in each
round by a factor of at least Θ

(√
logn

)
as long as the number of informed

vertices is in O
(
n · 2− logn/ log logn

)
, with high probability. Assume that the

exact factor for the growth in each round is a
√

logn where a denotes a constant.
Then, the number of informed nodes that can be reached in Phase II is at most(

a
√

logn
)4 logn/ log logn

=
(
a2
)2 logn/ log logn

·
((√

logn
)2 logn/ log logn

)2

=
(
a2 ·

√
logn

)2 logn/ log logn
·
(√

logn
)2 logn/ log logn

� n · 2− logn/ log logn .

We apply a union bound over all messages and conclude we reach the bound
on the number of informed vertices for Phase II after at most 4 logn/ log logn
rounds with high probability.

50

6.3 Phase III – Broadcast

6.3 Phase III – Broadcast

In the last phase we use a simple push-pull broadcasting procedure to inform
the remaining uninformed nodes. Once Ω(n/2logn/ log logn) nodes are informed
after the second phase, within O(logn/ log logn) additional steps at least n/2
nodes become informed, with high probability. Furthermore, after additional
O(logn/ log logn) steps, all nodes are informed with high probability [Els06].

Lemma 16. After applying push-pull for O(logn/ log logn) steps, at most
n/ logn uninformed vertices remain for every message m, with high probability.
This procedure has a runtime complexity in O(logn/ log logn) and an overall
message complexity in O(n logn/ log logn).

Proof. Lemma 4 from [Els06] states that once the number of nodes possessing
some message m is Ω(n/2logn/ log logn), then in additional O(logn/ log logn)
steps the number of nodes informed of m exceeds n/2. We observe that
the number of informed nodes is within the bounds required in Lemma 4
from [Els06] for each message. We conclude that the set of informed vertices
underlies an exponential growth with high probability. Therefore, |Im(t)| ≥ n/2
after additional O(logn/ log logn) steps, using O(n logn/ log logn) messages.
Furthermore, we apply Lemma 5 from [Els06], which states that after additional
O(log logn) steps it holds that for the uninformed set |H(t)| ≤ n/ logn with
high probability. Since both, Lemma 4 and Lemma 5 from [Els06] hold with
high probability 1−o

(
n−2) we use union bound over all messages and conclude

that these results hold for all messages with high probability.
Note that the two lemmas from [Els06] are stated w.r.t. Erdős-Rényi random

graphs. The same proofs, however, lead to the same statements for the
configuration model.

Lemma 17. After O(logn/ log logn) steps, every remaining uninformed node
is informed of message m with high probability.

The proof of Lemma 17 is similar to Lemma 5 and Lemma 6 from [Els06].
Our adapted version is as follows.

Proof. After performing the mixing steps during the random walk phase, we
can assume that each message is distributed uniformly at random nodes. From
Lemma 16 we deduce that each node opens at most a number of connections in
O(logn/ log logn) after the last mixing phase, whereas each node has at least
log2+ε n communication stubs. Additionally, we consider in the following phase
O(logn/ log logn) pull steps. Each node can open up to O(logn/ log logn)
additional connections during this phase and incoming connections from unin-
formed nodes can be bounded by the same expression following a balls-into-bins
argument. We denote the number of opened stubs as S with S = O(logn) and
conclude that we still have at least log2+ε n− S = Ω

(
log2+ε n

)
free connection

51

6 Traditional Model

stubs available which are not correlated to the message distribution process of
message m in any way.
In each step, a node opens a connection to a randomly chosen neighbor

and therefore chooses a wasted communication stub with probability at most
a logn/(d · log logn) where a is a constant.

If a free stub is chosen, the corresponding communication partner is informed
of message m with probability at least |Im(t)| · (d− S)/(n · d). Therefore, any
uninformed node v remains possibly uninformed, that is, either uses an already
wasted communication stub or connects to an uninformed partner, with the
following probability.

p′ = Pr[v remains possibly uninformed]
= 1− Pr[v is definitely informed]
≤ 1− Pr[v chooses a free stub to u] · Pr[u ∈ Im(t)]

≤ 1−
(

1− c

logn · log logn

)
·
((

1− |Hm(t)|
n

)
d− S
d

)

We apply Hm(t) ≤ n/ logn and obtain

p′ ≤ 1−
(

1− c

logn · log logn

)
·
(

(1− 1/ logn)d− S
d

)
≤ c

logn · log logn +
(

1− c

logn · log logn

)
d− S

logn · d
< log−c n

for a suitable constant c. Therefore, the probability that an arbitrary node
remains uninformed after 4 logn/(c · log logn) steps can be bounded by

Pr[v remains uninformed] ≤
(1

logn

) 4 logn
log logn

= 1
n4 .

Lemma 18. After the broadcast phase, every node is informed of every message
with high probability.

Proof. We use union bound on the results of Lemma 17 over all n messages
and over all n nodes. Thus after the broadcast phase each node is informed of
every message with probability at least 1− n−2.

Proof of Theorem 1. The theorem follows from the proofs of the correctness
of the individual phases, Lemma 2 for the distribution phase, Lemma 13,
Lemma 14, and Lemma 15 for the random walks phase, and Lemma 18 for the
broadcast phase.

52

7
Memory Model

In this chapter we consider the G(n, p) graph, in which an edge between two
nodes exists with probability p, independently, and assume that the nodes have
a constant size memory. That is, the nodes can store up to four different links
they called on in the past, and they are also able to avoid these links as well as
to reuse them in a certain time step. More formally, we assume that each node
v ∈ V has a list lv of length four. The entry lv[i] contains a link address which
is connected on the other end to a fixed node u. Whenever node v calls on
lv[i] in a step, it opens a communication channel to u. From now on, we will
not distinguish between the address stored in lv[i] and the node u associated
with this address. As assumed in the previous chapters, such a channel can be
used for bi-directional communication in that step. Furthermore, v is also able
to avoid the addresses stored in lv, by calling on a neighbor chosen uniformly
at random from N(v) \ ∪3

i=0{lv[i]}, where N(v) denotes the set of neighbors
of v. This additional operation is denoted open-avoid in Algorithm 7.2 and
Algorithm 7.1. Note that the approach of avoiding a few previously contacted
neighbors was also considered in the analysis of the communication overhead
produced by randomized broadcasting [BEF08, ES08] and in the analysis of the
run time of push-pull protocols in the preferential attachment model [DFF11].
Clearly, the list lv may also be empty, or contain less than 4 addresses.
The algorithm we develop is similar to the one in [BCEG10] for complete

graphs. However, in [BCEG10] the protocol just uses the fact that in the
random phone call model the nodes of a complete graph do not contact
the same neighbor twice with high probability. This cannot be assumed
here. Furthermore, to obtain a communication infrastructure for gathering
information at a so-called leader, we use some specific structural property of
random graphs which was not necessary in complete graphs. There, we built
an infrastructure by using communication paths in an efficient broadcasting
network obtained by performing broadcasting once. Here, we need to analyze
the structure of random graphs in relation with the behavior of our algorithm.

53

7 Memory Model

7.1 Leader Election

Algorithm LeaderElection(G)
at each node v do in parallel

with probability log2 n/n do
v becomes active;
open-avoid();
push(IDv);
close();

for t = 1 to logn+ ρ log logn do
at each node v do in parallel

if v has incoming messages m then
v becomes active;

Let iv(t) be the smallest identifier that v received so far;
if v is active then

open-avoid();
push(iv);
close();

for t = 1 to ρ log logn do
at each node v do in parallel

open-avoid();
iv ← min{iv, receive()};
close();

at each node v do in parallel
if IDv = iv then

v becomes the leader;

Algorithm 7.1: distributed leader-election algorithm

In our main algorithm, we assume that a single node is aware of its role as a
leader. The other nodes, however, do not necessarily have to know the ID of
this node. They just have to be aware of the fact that they are not leaders.
In order to find a leader we may apply the following leader election algorithm
described in Algorithm 7.1, see also [BCEG10].
Each node flips a coin, and with probability log2 n/n it becomes a possible

leader. We assume that every node v has a unique ID denoted by IDv. Each
possible leader starts a broadcast, by sending its ID to some nodes chosen
uniformly at random from the set of its neighbors, except the ones called in
the previous three steps. Once a node receives some ID, it becomes active,
and starts propagating the smallest ID it received so far. This push phase is
performed for logn + ρ log logn steps, where ρ > 64 is some large constant.
In the last ρ log logn steps, the IDs of the possible leaders are spread by pull
transmissions. The possible leader with the smallest ID will become the leader.

54

7.1 Leader Election

Lemma 19. At the end of Algorithm 7.1, all nodes are aware of the leader,
with high probability.

Proof. Let us denote by I(t) the set of nodes at time t, which have received some
ID by this time step. Lemma 2.2 of [ES08] states that a message is distributed
by a modified push-pull algorithm, in which each node is allowed to avoid the
3 neighbors chosen in the previous 3 steps, is distributed to n− n/ 4

√
n nodes

in logn+ ρ log logn steps1. This implies that by this time I(t) ≥ n− n/ 4√d,
and the number of message transmissions is at most O(n log logn), with high
probability. Furthermore, n/ logO(1) n nodes know the leader. According
to Lemma 2.7. and 2.8. from [ES08], after additional O(log logn) steps, the
message is distributed to all nodes, with high probability. This implies that
after this number of additional steps I(t) = n, with high probability, and
Ω
(
n/ log2 n

)
nodes know the leader, with high probability. Applying Lemmas

2.7. and 2.8. from [ES08] again, we obtain the lemma.

Now we consider the robustness of the leader election algorithm. We show
that by applying our algorithm, one can tolerate up to nε′ random node failures,
with high probability, where ε′ < 1/4 is a small constant. That is, during the
execution of the algorithm, nε′ nodes, chosen uniformly and independently
at random, may fail at any time. The node failures are non-malicious, that
is, a failed node does not communicate at all. The theorem below is stated
for p = log5 n/n. However, with an extended analysis, the theorem can be
generalized to any p > log2+ε n/n.

Lemma 20. In the failure model described above, at the end of Algorithm 7.1
the leader is aware of its role, and all other nodes know that they are not the
leader with high probability.

Proof. Here we only consider the node, which decided to become a possible
leader, and has the smallest ID among such nodes. The algorithm is the
same as the sequential version of the broadcast algorithm given in [ES08].
We know that within the first (1 − ε′) logn − ρ log logn steps, the number
of informed nodes, that is, the number of nodes receiving the ID of the
node we consider, is n1−ε′/ log2+Ω(1) n, with high probability. Since nε′/n
nodes may fail in total, independently, Chernoff bounds imply that all nodes
informed within the first (1− ε′) logn− ρ log logn steps are healthy, with high
probability. We also know that after logn+ ρ log logn push steps, the number
of informed nodes is n− n/ log4+Ω(1) n, with high probability [ES08]. On the
other side, if we only consider push transmissions, the number of nodes which
become informed by a message originating from a node informed after step
(1− ε′) logn− ρ log logn is at most 2ε′+2ρ log logn = nε

′ logO(1) n. This is due to
the fact that the number of informed nodes can at most double in each step.
Thus, the total number of nodes, which received the message from a failed node

1 We adapted the run time from the lemma mentioned before to our algorithm.

55

7 Memory Model

in the first logn+ ρ log logn push steps, if this node would not fail, is at most
n2ε′ logO(1) n. The probability that one of the possible leaders is not among
the nodes informed in the first logn+ ρ log logn push steps, or is not informed
due to a node failure, is o

(
log−4 n

)
. The union bound over O

(
log2 n

)
possible

leaders implies the lemma.

7.2 Gossiping Algorithm and its Analysis

The pseudocode can be found in Algorithm 7.2. We assume that at the
beginning a random node acts as a leader. For an efficient and robust leader
election algorithm see Algorithm 7.1. Once a leader is given, the goal is to
gather all the messages at this node. First, we build an infrastructure as follows
(Phase I). The leader emits a message by contacting four different nodes (one
after the other), and sending them these messages. These nodes contact four
different neighbors each, and send them the message. If we group four steps to
one so-called long-step, then in long-step i, each of the nodes which received the
message in the long-step before for the first time chooses four distinct neighbors,
and sends them the message. Furthermore, each node stores the addresses of
the chosen nodes. This is performed for log4 n+ ρ log logn long-steps, where
ρ > 64 is some large constant. For the next ρ log logn long-steps, all nodes,
which have not received the message of the leader so far, choose 4 different
neighbors in each of these long-steps, and open communication channels to
these nodes, that is, communication channels are opened to all these different
neighbors within one long-step, where each of these neighbors is called in
exactly one step. If some node has the message of the leader in some step, then
it sends this message through the incident communication channel(s) opened
in that step. We call these last ρ log logn long-steps pull long-steps.
In Phase II the infrastructure built in Phase I is used to send the message

of each node to the leader. This is done by using the path, on which the the
leader’s message went to some node, to send the message of that node back to
the leader. In the third phase the messages gathered by the leader are sent to
all nodes the same way the leader’s message was distributed in Phase I. Then,
the following lemmas hold.

Lemma 21. After log4 n+ ρ log logn long-steps at least n/2 nodes have the
message of the leader, with high probability.

Proof. Since during the whole process every node only chooses four neighbors,
simple balls-into-bins arguments imply that the total number of incoming
communication channels opened to some node u is O(logn), with probability
at least 1− n−4 [RS98].

Let v be the leader, and let its message be mv(0). We know that as long as
d = 2o(√logn), the tree spanned by the vertices at distance at most ρ log logn
from v is a tree, or there are at most 4 edges which violate the tree property

56

7.2 Gossiping Algorithm and its Analysis

Algorithm Memory(G)
Assume a leader is given.
Phase I

for t = 0 to 3 do
The leader performs an open-avoid and then then a push(mv(0))
operation. In each step, the leader stores in lv[t] the address of the
node contacted in this step.

for t = 4 to 4 log4 n+ 4ρ log logn do
Every node v that received mv(0) in step t for the first time (with
t = 4j + k and k ∈ {0, 1, 2, 3}) is active in step 4(j + 1), 4(j + 1) + 1,
4(j + 1) + 2, and 4(j + 1) + 3.

Every active node v performs an open-avoid and then a
push(mv(0)) operation. v stores in lv[t mod 4] the address of the
node contacted in the current step.

Every active node v also stores the time steps 4(j + 1), 4(j + 1) + 1,
4(j + 1) + 2 and 4(j + 1) + 3 together with the neighbors it used for
the push operations in the list lv.

for t = 4 log4 n+ 4ρ log logn+ 1 to 4 log4 n+ 8ρ log logn do
Every node v that knows mv(0) performs pull(mv(0)) operation.
Every node v that does not know mv(0) performs an open-avoid and
receives eventually (mv(0)). The address of the contacted node is
stored in lv[t mod 4].

Every node v that receives mv(0) for the first time in step t
remembers the chosen neighbor together with t in the list lv[0].

Phase II
t′ ← 4 log4 n+ 8ρ log logn
for t = 1 to ρ log logn do

Every node v which received the message in step t′ − t+ 1 (for the
first time) opens a channel to the corresponding neighbor in lv[0]
and performs a push operation with all original messages it has.

t′ ← 4 log4 n+ 8ρ log logn
for t = 1 to 4 log4 n+ 8ρ log logn do

Every node v which stores a neighbor with time step t′ − t+ 1 in its
list lv opens a channel to that neighbor in lv and receives the
message from that neighbor. The node at the other side performs a
pull operation with all original messages it has.

Phase III
The leader broadcasts all original messages using the algorithm described
in Phase I for message mv(0).

Algorithm 7.2: memory-based gossiping algorithm. After each step, the nodes close all
channels opened in that step.

57

7 Memory Model

[BES14]. Thus, after ρ log logn steps, at least 3ρ log logn−1 vertices have mv(0)
with high probability. If d = 2Ω(√logn) simple probabilistic arguments imply
that at least 3ρ log logn−1 vertices have mv(0) with high probability.
Let now I+(t) be the set of nodes, which receive mv(0) in long-step t (for

the first time). Each of these nodes chooses an edge, which has already
been used (as incoming edge), with probability O(logn/d) ≤ 1/ log1+ε/2 n. Let
|I(t)| ≤ n/ log2 n and I+(t) = {v1, . . . , v|I+(t)|}. Given that some vi has at least
pn(1− o(1)) neighbors in G, and at most |I(t)|+ 4|I+(t)|)p(1 + o(1)) + 5 logn
neighbors in I(t) ∪ {v1, . . . , vi−1}, the edge chosen by vi in a step of the long-
step t+ 1 is connected to a node, which is in I(t) or it has been contacted by
some node v1, . . . , vi−1 in long-step t+ 1, with probability at most

pI ≤
(|I(t)|+ 4|I+(t)|)p(1 + o(1)) + 5 logn

pn(1− o(1)) (7.1)

independently, see also [Els06]. Thus, we apply Chernoff bounds, and obtain
that the number of newly informed nodes is

|I+(t+ 1) ≥ 4|I+(t)|
(

1− 2
log1+ε/2 n

)
,

with probability 1 − n−3. Therefore, after log4 n − O(log logn) steps, the
number of informed nodes is larger than n/ log2 n.

Now we show that within ρ log logn steps, the number of uninformed nodes
becomes less than n/2. As long as |I(t)| ≤ n/3, applying equation (7.1)
together with standard Chernoff bounds as in the previous case, we obtain that

|I+(t+ 1) ≥ 4|I+(t)| − |I+(t)|5|I
+(t)(1 + o(1))

n
> 2|I+(t)| ,

with probability 1 − n−3. Once |I(t)| becomes lager than n/3, it still holds
that |I+(t)| ≥ |I(t)| (see above). Thus, in the next step the total number of
informed nodes exceeds n/2, with high probability.

The approach we use here is similar to the one used in the proof of Lemma
2.2. in [ES08]; the only difference is that in [ES08] the nodes transmitted the
message in all steps, while here each node only transmits the message to 4
different neighbors chosen uniformly at random. Note that each node only
opens a channel four times during these log4 n+ ρ log logn long-steps, which
implies a message complexity of O(n).

Lemma 22. After ρ log logn pull long-steps, all nodes have the message of
the leader with high probability.

Proof. First we show that within ρ log logn/2 steps, the number of uninformed
nodes decreases below n/ 4√d. The arguments are based on the proof of Lemma
2.2. from [ES08]. Let us consider some time step t among these ρ log logn/2

58

7.2 Gossiping Algorithm and its Analysis

steps. Given that all nodes have some degree Ω(d), a node chooses an incident
edge not used so far (neither as outgoing nor as incoming edge) with probability
1−O(logn/d). According to Lemma 1 of [Els06], this edge is connected to a
node in H(t) with probability at most O(p|H(t)|+ logn)/d), independently.
Applying Chernoff bounds, we obtain that as long as |H(t)| > n/ 4√d, we have

|H(t+ 1)| ≤ O
(
|H(t)| ·

(|H(t)|
n

+ logn
d

))
,

with high probability. Thus, after ρ log logn/2 steps, the number of uninformed
nodes decreases with high probability below n/ 4√d, see also [KSSV00]. Apply-
ing now Lemmas 2.7. and 2.8. from [ES08] (for the statement of these lemmas
see previous proofs), we obtain the lemma. Since only nodes of H(t) open com-
munication channels in a step, we obtain that the communication complexity
produced during these pull long-steps is O(n), with high probability.

Lemma 23. After Phase II, the leader is aware of all messages in the network,
with high probability.

Proof. Let w be some node, and we show by induction that the leader receives
mw(0). Let t be the long-step, in which w receives mv(0). If t = 1, then w is
connected to v in the communication tree rooted at v, and v receives mw(0) in
one of the last four steps of Phase II.
If t > 1, then let w′ denote the successor of w in the communication tree

rooted at v. That is, w received mv(0) from w′ in long-step t. This implies
that w′ either received mv(0) in pull long-step t or t−1, or it received mv(0) in
a push long-step t− 1. If however, w′ obtained mv(0) in pull long-step t, then
this happened before w received the message. In both cases w′ will forward
mw(0) to v together with mw′(0), according to our induction hypothesis, and
the lemma follows.

Lemma 24. After Phase III, gossiping is completed with high probability.

The proof of Lemma 24 follows directly from Lemma 22. From the lemmas
above, we obtain the following theorem.

Theorem 25. With high probability, Algorithm 7.2 completes gossiping in
O(logn) time using O(n) message transmissions. If leader election has to be
applied at the beginning, then the communication complexity is O(n log logn).

Now we consider the robustness of our algorithm. We show that by applying
our algorithm twice, independently, one can tolerate up to nε′ random node
failures, with high probability, where ε′ < 1/4. That is, during the execution of
the algorithm, nε′ nodes, chosen uniformly and independently at random, may
fail at any time. The node failures are non-malicious, that is, a failed node
does not communicate at all. The theorem below is stated for p = log5 n/n.
However, with an extended analysis, the theorem can be generalized to any

59

7 Memory Model

p > log2+ε n/n. As before, we assume that a random node acts as a leader.
Since at most nε′ random nodes fail in total, the leader fails during the execution
of the algorithm with probability n−Ω(1). Moreover, due to the robustness of
the leader election algorithm from Section 7.1, the result of Theorem 26 also
holds if leader election has to be applied to find a leader at the beginning.

Theorem 26. Consider a G(n, p) graph with p = log5 n/n. Assume that
f = nε

′ random nodes fail according to the failure model described above, where
ε′ < 1/4. If we run Algorithm 7.2 two times, independently, then at the end
n− |f |(1 + o(1)) nodes know all messages of each other, with high probability.

Proof. To analyze the process, we assume that all the failed nodes fail directly
after Phase I and before Phase II. This ensures that they are recorded as
communication partners for a number of nodes, but these failed nodes are not
able to forward a number of messages in Phase II to the leader. Let us denote
the two trees, which are constructed in Phase I of the two runs of the algorithm,
by T1 and T2, respectively. First we show that with probability 1− o(1) there
is no path from a failed node to another failed node in any of these trees.
Let us first build one of the trees, say T1. Obviously, at distance at most
(1− ε′) log4 n− ρ log logn from the root, there will be less than n1−ε′/ log2 n

nodes. Thus, with probability (1−nε′/n)n1−ε′/ log2 n = 1−o(1), no node will fail
among these n1−ε′/ log2 n many nodes. This implies that all the descendants
of a failed node will have a distance of at most ε′ log4 n+ O(log logn) to this
node. Then, the number of descendants of a failed node is nε′ logO(log logn) n,
given that the largest degree is logO(1) n. As above, we obtain that none of the
failed nodes is a descendant of another failed node with probability 1− o(1).
For simplicity we assume that each failed node participates in at least one

push long-step, that is, it contacts 4 neighbors and forwards the message of
the leader (of T1 and T2, respectively) to these neighbors. Now we consider
the following process. For each failed node v, we run the push-phase for
ε′ log4 n+ O(log logn) long-steps. The other nodes do not participate in this
push phase, unless they are descendants of such a failed node during these
ε′ log4 n + O(log logn) long-steps. That is, if a node is contacted in some
long-step i, then it will contact 4 neighbors in long-step i+ 1; in long-step 1
only the failed nodes are allowed to contact 4 neighbors. Then, we add to each
node w 6= v in the generated tree rooted at v all nodes being at distance at
most ρ log logn from w. Clearly, the number of nodes in such a tree rooted
at v together with all the nodes added to it is nε′ logO(log logn) n. This is then
repeated a second time. The nodes attached to v in the first run are called the
descendants of v in T1 in the following. Accordingly, the corresponding nodes
in the second run are called the descendants of v in T2.
We consider now two cases. In the first case, let v be a failed node, and

assume that v contacts four neighbors in T2, which have not been contacted
by v in T1. Such a failed node is called friendly. Furthermore, let F (T1) be the
set of nodes which are either failed or descendants of a failed node in T1. As

60

7.2 Gossiping Algorithm and its Analysis

shown above, |F (T1)| = nε
′ · nε′ logO(log logn) n, with probability 1− o(1). Let

vi, i = 1, 2, . . . be the descendants of v in T2, and denote by Ai the event that
vi 6∈ F (T1). Then,

Pr[Ai | A1 . . . Ai−1] ≤ log5 n · n2ε′ logO(log logn) n

n
<
n2ε′ logO(log logn) n

n
.

Since v has at most nε′ logO(log logn) n descendants, none of them belongs to
F (T1), with probability at most n3ε′ logO(log logn) n/n. Thus, the expected
number of descendants of friendly failed nodes in F1 ∩ F2, is o(1), as long as
ε′ < 1/4.
In the second case, we denote by NF1 the set of nodes, which are direct

descendants of non-friendly failed nodes. That is, NF1 are the nodes which are
contacted by non-friendly failed nodes in step 1 of the process described above.
Since p = log5 n/n, a failed node is non-friendly with probability O

(
1/ log5 n

)
.

Using standard Chernoff bounds, we have |NF1| = O
(
|f |/ log5 n

)
, with high

probability. Let now NF2 denote the set of nodes which are either contacted
by the nodes NF1 in a push long-step of the original process in T1 as well
as in T2, or contact a node in NF1 in a pull long-step of the original process
in both, T1 and T2. Similarly, NFi+1 denotes the set of nodes which are
either contacted by the nodes NFi in a push long-step of the original process
in T1 as well as in T2, or contact a node in NFi in a pull long-step of the
original process in both T1 and T2. We show that |NFi+1| < |NFi| with high
probability, and for any non-friendly failed node v there is no descendant of v
in NFi with probability 1−o(1). The second result implies that |NFρ logn| = 0
with high probability, if ρ is large enough. The first result implies then that∑ρ logn
i=1 |NFi| < O

(
|f |/ log3 n

)
, with high probability.

To show the first result we compute the expected value E[NFi+1] given NFi.
Clearly, a node contacted by a node of NFi in T1 is contacted in T2 as well
with probability O

(
1/ log5 n

)
. Similarly, a node which contacted a node of

NFi in T1 contacts the same node in T2 with probability O
(
1/ log5 n

)
. Simple

balls-into-bins arguments imply that the number of nodes, which may contact
the same node, is at most O(logn/ log logn) [HR90]. Applying now the method
of bounded differences, we have |NFi+1| < |NFi| with high probability, as long
as NFi is large enough.
The arguments above imply that if the number of descendants of a non-

friendly failed node in NFi is at least ρ logn for some ρ large enough, then
the number of descendants in NFi+1 does not increase, with high probability.
Furthermore, as long as the number of these descendants NFi is O(logn),
then there will be no descendants in NFi+1 with probability 1 − o(1), and
the statement follows. Summarizing,

∑∞
i=1NFi = O

(
|f |/ log3 n

)
with high

probability, which concludes the proof.

61

8
Empirical Analysis

We implemented our algorithms using the C++ programming language and
ran simulations for various graph sizes and node failure probabilities using
four 64 core machines equipped with 512 GB to 1 TB memory running on
Linux. The underlying communication network was implemented as an Erdős-
Rényi random graph with p = log2 n/n. We measured the number of steps,
the average number of messages sent per node, and the robustness of our
algorithms.

8.1 Communication Complexity

The main result from Chapter 6 shows that it is possible to reduce the number
of messages sent per node by increasing the run time. This effect can also be
observed in Figure 8.1, where the communication overhead of three different
methods is compared. The plot shows the average number of messages sent per
node using a simple push-pull-approach, Algorithm 6.1, and Algorithm 7.2. In
the simple push-pull-approach, every node opens in each step a communication
channel to a randomly selected neighbor, and each node transmits all its
messages through all open channels incident to it. This is done until all
nodes receive all initial messages. Formally, the simple protocol is specified in
Algorithm 8.1.

for t = 1 to O(logn) do
at each node v do in parallel

open();
pushpull(mv);
mv ← mv ∪ receive();
close();

Algorithm 8.1: a simple push-pull algorithm to perform randomized gossiping

63

8 Empirical Analysis

 4

 6

 8

 10

 12

 14

 16

 18

 20

103 104 105 106

Push Pull
Fast Gossiping

Memory

Figure 8.1: comparison of the communication overhead of the gossiping methods. The
x-axis shows the graph size, the y-axis the average number of messages sent per node.

Figure 8.1 shows an increasing gap between the message complexity of
Algorithm 6.1 and the simple push-pull approach. Furthermore, the data show
that the number of messages sent per node in Algorithm 7.2 is bounded by 5.
According to the descriptions of the algorithms, each phase runs for a certain
number of steps. The parameters were tuned as described in Table 8.1 to
obtain meaningful results.
The fact that the number of steps is a discrete value also explains the

discontinuities that can be observed in the plot. In the case of the simple
push-pull-approach, these jumps clearly happen whenever an additional step is
required to finish the procedure. Note, that since in this approach each node
communicates in every round, the number of messages per node corresponds
to the number of rounds.
In the case of Algorithm 6.1, we do not only observe these jumps, but

also a reduction of the number of messages per node between the jumps.
Let us consider such a set of test runs between two jumps. Within such an
interval, the number of random walk steps as well as broadcasting steps remain
the same while n increases. The number of random walks, however, is not
fixed. Since each node starts a random walk with a probability of 1/ logn, the
relative number of random walks decreases and thus also the average number of
messages per node (see also Figure 8.3). This shows the impact of the random
walk phase on the message complexity.

The last phase of each algorithm was run until the entire graph was informed,
even though the nodes do not have this type of global knowledge. From our
data we observe that the resulting number of steps is concentrated (that is,

64

8.1 Communication Complexity

0.0

0.5

1.0

1.5

2.0

2.5

103 104 105 106

Figure 8.2: relative number of additional node failures in the memory model with a graph
size of 1,000,000. The x-axis shows the number of nodes marked failed F , the y-axis the ratio
of additional uninformed nodes to F .

Phase Limit Value

Algorithm 6.1

I number of steps d1.2 · log logne
II number of rounds dlogn/ log logne
II random walk probability 1.0/ logn
II number of random walk steps dlogn/ log logn+ 2e
II number of broadcast steps d0.5 · log logne

Algorithm 7.2

I first loop, number of steps
(rounded to a multiple of 4)

2.0 · logn

I second loop, number of steps b2.0 · log lognc
II number of steps corresponds to Phase I
III number of push steps blognc

Table 8.1: the actual constants used in the simulation

65

8 Empirical Analysis

for the same n the number of steps to complete only differs by at most 1
throughout all the simulations). Furthermore, no jumps of size 2 are observed
in the plot. Thus, overestimating the obtained run time by 1 step would have
been sufficient to complete gossiping in all of our test runs.

8.2 Robustness of the Memory Model

To gain empirical insights into the behavior of the memory-based approach
described in Chapter 7 under the assumption of node failures, we implemented
nodes that are marked as failed. These nodes simply do not store any incoming
message and refuse to transmit messages to other nodes.
The plot in Figure 8.2 shows the results of simulations on an Erdős-Rényi

random graph consisting of 1,000,000 nodes with an expected node degree
of log2 n ≈ 400. Our simulation of Algorithm 7.2 constructed 3 message
distribution trees, independently. Afterwards we marked F nodes chosen
uniformly at random as failed. The nodes were deactivated before Phase II.
The x-axis in Figure 8.2 shows this number of nodes F . In the simulation, we
determined the number of initial messages that have been lost in addition to
the messages of the F marked nodes. Figure 8.2 shows on the y-axis the ratio
of the lost messages of healthy nodes over F . That is, zero indicates that no
additional initial message was lost, whereas 2.0 indicates that for every failed
node the initial messages of at least two additional healthy nodes were not
present in any tree root after Phase II.

11.50

11.75

12.00

12.25

12.50

12.75

13.00

13.25

13.50

105 106

Fast Gossiping

Figure 8.3: a more detailed view of the data presented in Figure 8.1 for Algorithm 6.1. The
x-axis shows the graph size, the y-axis the number of messages sent per node.

66

8.2 Robustness of the Memory Model

Further plots showing additional graph sizes and various levels of detail can
be found in Figure 8.4. The corresponding simulations were run on graphs of
size 100,000 and 500,000 nodes, respectively. They visualize the results of the
same type of simulation as presented in Figure 8.2.

Even more details can be obtained from the plots shown in Figure 8.5, where
we ran our simulation with a higher resolution. That is, we ran a series of
at least 5 tests per number of failed nodes. The number of failed nodes was
chosen from the set {0, 100, 200, 300, . . . }. We used graphs of two different
sizes in these 6 plots. The left column shows the results for a graph consisting
of 100,000 nodes and the right column for 500,000 nodes. The x-axis shows the
number of failed nodes, the y-axis shows the percentage of runs in which more
than a certain number T of additional nodes failed. This number is T = 0 for
the top row, T = 10 for the middle row and T = 100 for the bottom row. For
example, this tells us that on a graph of size 100,000 more than 4000 nodes
could fail and still the number of additional uninformed nodes was less than
100 in all test runs.

67

8 Empirical Analysis

0.0

0.5

1.0

1.5

2.0

2.5

102 103 104 105

0.0

0.5

1.0

1.5

2.0

2.5

103 104 105

Figure 8.4: relative number of additional node failures in the memory model with graphs
of sizes 100,000 (top) and 500,000 (bottom). The x-axis shows the number of failed nodes F ,
the y-axis the ratio of additional uninformed nodes to F .

68

8.2 Robustness of the Memory Model

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000

Figure 8.5: detailed plot showing the robustness of Algorithm 7.2 on graphs of sizes 100,000
(left column) and 500,000 (right column). The x-axis shows the number of failed nodes, the
y-axis shows the percentage of runs in which more than T additional numbers remained
uninformed. In the top T = 0, in the middle T = 10 and in the bottom T = 100.

69

A
Additional Lemmas

For the sake of completeness, we state additional lemmas that we used for our
analysis in this appendix.

A.1 Additional Lemmas from [Els06]

For some u, v let Au,v denote the event that u and v are connected by an edge,
and let Au,v,l denote the event that u and v share an edge and u chooses v
in step l (according to the random phone call model). In the next lemma, we
deal with the distribution of the neighbors of a node u in a graph G(n, p), after
it has chosen t neighbors, uniformly at random, in t = O(logn) consecutive
steps. In particular, we show that the probability of u being connected with
some node v, not chosen within these t steps, is not substantially modified
after O(logn) steps.

Lemma 1 from [Els06]. Let V = {v1, . . . , vn} be a set of n nodes and let
every pair of nodes vi, vj be connected with probability p, independently, where
p ≥ logδ n/n for some constant δ > 2. If t = O(logn), u, v ∈ V , and

A(U0, U1, U2) =
∧

0<l≤t
(vi,vj ,l)∈U0

Avi,vj ,l
∧

(vi′ ,vj′)∈U1

Avi′ ,vj′
∧

(vi′′ ,vj′′)∈U2

A(vi′′ ,vj′′) ,

for some U0 ⊂ V × V × {0, . . . , t} and U1, U2 ⊂ V × V , then it holds that

Pr[(u, v) ∈ E | A(U0, U1, U2)] = p(1±O(t/d)) ,

for any U0, U1, U2 satisfying the following properties:
• |U0 ∩ {(vi, vj , l)|vj ∈ V }| = 1 for any vi ∈ V and l ∈ {0, . . . , t},
• |U1 ∩ {(u, u′)|u′ ∈ V }| = Ω(d) and |U1 ∩ {(v, v′)|v′ ∈ V }| = Ω(d),
• (u, v) 6∈ U1 ∪ U2, and (u, v, i) 6∈ U0 for any i.

71

A Additional Lemmas

A.2 Additional Lemmas from [ES08]

Lemma 2.2 from [ES08] (adapted version). Let Algorithm 7.2 be executed on
the graph G(n, p) of size n, where p > log2+Ω(2) n/n and ρ is a properly chosen
(large) constant. If t = logn+ ρ

2 log logn, then |H(t)| ≤ n/ 4√d and the number
of transmissions after t time steps is bounded by O(n log logn). Additionally,
if t = logn+ 3ρ

8 log logn, we have |H(t)| ≥ n/ 4√d.

Lemma 2.7 from [ES08] (adapted version). Let |H(t)| ∈ [logq n, n/ 4√d] be
the number of uninformed nodes in G(n, p) at some time t = O(logn), where
q is a large constant, and let Algorithm 7.2 be executed on this graph. Then,
|H(t+ 3ρ log logn/8)| ≤ logq n, with high probability, provided that ρ is large
enough.

Lemma 2.8 from [ES08] (adapted version). Let |H(t)| ≤ logq n be the number
of uninformed nodes in G(n, p) at time t = O(logn), and let Algorithm 7.2 be
executed on this graph. Then within additional ρ log logn/8 steps all nodes in
the graph will be informed, with high probability, whenever ρ is large enough.

72

IIPart IILoad Balancing

Hoda Akbari, Petra Berenbrink, Robert Elsässer, and Dominik Kaaser:
Discrete Load Balancing in Heterogeneous Networks with a Focus on
Second-Order Diffusion. In Proceedings of the 35th IEEE International
Conference on Distributed Computing Systems (ICDCS), 2015, pages
497–506. doi: 10.1109/ICDCS.2015.57.

http://dx.doi.org/10.1109/ICDCS.2015.57

9
Load Balancing

Load balancing is a fundamental task in many parallel and distributed appli-
cations. Often there are significant differences in the amount of work load
generated on the processors of a parallel machine, which have to be balanced
in order to obtain a substantial benefit w.r.t. the runtime of a parallel com-
putation. One of the most prominent examples are so-called finite element
simulations [FWM94].

In the load balancing problem we are given an interconnection network and
a number of load items which are arbitrarily distributed over the nodes of
the network. The goal is to redistribute the items such that at the end each
node has (almost) the same load. To achieve this goal, nodes are only allowed
to communicate with their direct neighbors. We assume that each node has
access to a global clock, and the algorithm works in synchronous rounds.

A prominent class of load balancing algorithms are so-called diffusion schemes
[DFM99]. In these algorithms, the nodes are allowed to balance their load
with all their neighbors simultaneously in a round. As already said in the
introduction, we distinguish between continuous and discrete settings. In
the continuous case it is assumed that the load can be split into arbitrarily
small pieces. Although often not realistic, this assumption is very helpful
for analyzing these algorithms [DFM99]. Discrete load balancing algorithms,
on the other hand, assume that tasks are atomic units of load, called tokens.
Hence, two adjacent nodes cannot balance their load any way they want;
only integral amounts of load can be transferred. As a consequence, discrete
diffusion algorithms are usually not able to balance the load completely [EMS06,
ABS16].

Two fundamental diffusion type algorithms are the first order scheme (FOS)
and the second order scheme (SOS) [MGS98]. In FOS the amount of load
that nodes send to their neighbors in a step only depends on their current
load difference. In SOS the flow over an edge is a function of the current load
difference between its incident nodes and the load that was sent in the previous

75

9 Load Balancing

round. Note that SOS can lead to negative load at some nodes if the loads of
the nodes are not sufficient to fulfill the calculated demand of all edges. There
are tight bounds on the worst-case convergence time of both, FOS and SOS, in
the continuous case [DFM99]. In general, for the optimal choice of parameters
SOS converges much faster than FOS.
The common approach for analyzing discrete diffusion algorithms is to

consider a closely related continuous version of the algorithm and to bound
the load deviation between load vectors of the two processes ([RSW98]). To
explain the approach we need a couple of definitions first. We assume that the
network is modeled by an undirected graph G = (V,E), where V = {1, . . . , n}
represents the set of processors and the edges in E describe (physical or virtual)
connections between them. A total of m identical load items are distributed
over the nodes. We use a vector x = (x1, . . . , xn) to indicate the amount of
load assigned to every node. In the heterogeneous network model the nodes
may have different speeds (s1, . . . , sn). The aim of a load balancing algorithms
is to distribute the load proportional to the processors’ speeds. Hence, the
ideal load of a node i is x̄i = msi/s, where s =

∑n
i=1 si. The deviation of a

load vector x from another load vector x′ is maxi≤n |xi − x′i|.
In the case of the common approach mentioned above the continuous process

would forward a fractional amount of load `e over some edge e, the discrete
algorithm rounds `e to an integer `′e. The rounding can be done deterministically
or randomized, whereas randomized rounding often outperforms deterministic
rounding (for example, the always round down approach [SS12]). The difference
between `e and `′e is called the rounding error. The propagation of the rounding
errors causes the two processes to deviate from each other.

Outlook

The remainder of this part is organized as follows. In Section 9.1 we formally
define the model and elaborate on related work. Then, in Section 9.2 we give
an overview over the three main results from [ABEK15]. In Chapter 10, we
first present the general framework for randomly rounding continuous diffusion
schemes to discrete schemes from [ABEK15]. Compared to the results of
[RSW98], which are only valid w.r.t. the class of homogeneous first order
schemes, this framework can be used to analyze a larger class of diffusion
algorithms, such as algorithms for heterogeneous networks and second order
schemes. Secondly, we state bounds on the deviation between randomized
second order schemes and their continuous counterparts. Additionally, we state
a bound for the minimum initial load in a network that is sufficient to prevent
the occurrence of negative load at a node during the execution of second order
diffusion schemes. The full proofs of the results stated in Chapter 10 can be
found in [ABEK14a] and in [ABEK15].

Finally, we present our empirical analysis and simulation results for various
graph classes in Chapter 11, comparing the performance of FOS and SOS and

76

9.1 Models

giving an empiric insight into the behavior of diffusion based load balancing
processes. For the simulation, we implemented a network and simulated both,
FOS and SOS load balancing processes. Especially in tori, our results show a
clear advantage of SOS over FOS w.r.t. the number of steps required to balance
the loads. We also empirically analyze the remaining imbalance that arises in
discrete load balancing schemes once the system has converged such that no
node has more than a constant number of additional load tokens. We propose
to switch from SOS to FOS once this threshold is reached, and our simulations
show that this change of the scheme leads to a further drop of the remaining
load imbalance.

9.1 Models

First Order Diffusion (FOS)

The first order scheme, FOS, was independently introduced by [Cyb89]
and [Boi90]. FOS in the homogeneous network model is defined as follows.
Let N(i) be the set of neighbors of node i and di be its degree. We define
x(t) = (x1(t), . . . , xn(t)) as the load vector at the beginning of round t ≥ 0,
where xi(t) is the load of node i. The amount of load transferred from node i
to node j in round t is denoted by yi,j(t). Then FOS is characterized by the fol-
lowing equations, where αi,j is a parameter, usually αi,j = 1/(max(di, dj) + 1).

yi,j(t) = αi,j ·
(
xi(t)− xj(t)

)
xi(t+ 1) = xi(t)−

∑
j∈N(i)

αi,j
(
xi(t)− xj(t)

)

The process can be expressed by means of a diffusion matrix M , where
Mi,i = 1 −

∑
j αi,j and Mi,j = αi,j for j ∈ N(i). All other entries of M are

zero. Then
x(t+ 1) = M · x(t) , (9.1)

where M is a symmetric doubly stochastic n× n matrix that can be viewed as
the transition matrix of an ergodic Markov chain with uniform steady-state
distribution. Hence, repeatedly applying the equation leads to the perfectly
balanced state. Let K denote the difference between the maximum and
minimum load at the beginning of the process. Let λ denote the second-largest
eigenvalue (in magnitude) of M . Then [MGS98, RSW98] show that FOS
converges in O(log(Kn)/(1− λ)) rounds. In [RSW98] the authors introduce a
framework to analyze a wide class of discrete FOS processes. This framework
served as a foundation for analyzing several discrete FOS algorithms. Many of
these publications consider uniform processors [BCF+15, BFH09, EM03, ES10,
FGS12, FS09, GM96, MGS98, RSW98, SS12], while a few others incorporate
processor speeds into the model [AB12, EMS06]. The authors of [FGS12]
consider a discrete process where the continuous flow is rounded randomly.

77

9 Load Balancing

This algorithm achieves a deviation bound of O((d log logn)/(1− λ)). The
drawback of this method is that rounding up on too many edges might result
in negative load. The process of [BCF+15] avoids negative load. A node
first rounds down all the flows on the adjacent edges, which leaves some
surplus tokens which are randomly distributed among the neighbors. This
algorithm achieves a deviation bound of O

(
d
√

logn+
√

(d logn log d)/(1− λ)
)
.

In [SS12] the authors study two natural discrete diffusion-based protocols and
their discrepancy bounds depend only polynomially on the maximum degree
of the graph and logarithmically on n.
The balancing process of [ABS16] simulates a continuous process using a

corresponding discrete process. In every round the discrete flow on each edge
is determined such that it stays as close as possible to the total continuous
flow that is sent over the edge. This process results in a deviation of O(d) (for
a more detailed description see next section). In [ES10] the authors consider
an approach that is based on random walks where tokens of overloaded nodes
use a random walk to reach underloaded nodes. While this approach leads to
a situation at the end, in which no node has more than a constant number
of tokens above average [ES10], it needs to keep track of the load traffic the
continuous scheme would produce. Moreover, the corresponding random walks
of the tokens result in a huge amount of load transmissions between the nodes,
which is not the case in diffusion based schemes [DFM99].

Second Order Diffusion (SOS)

Muthukrishnan et al. [MGS98] introduce the continuous second order scheme
which is based on a numerical iterative method called successive over-relaxation
[GV61] and is one of the fastest diffusion load balancing algorithms. In SOS,
the amount of load transmitted over each edge depends on the current load
as well as the load transferred in the previous round. The only exception is
the very first round in which FOS is applied. Subsequent rounds follow the
equations below.

yi,j(t) = (β − 1) yi,j(t− 1) + βαi,j
(
xi(t)− xj(t)

)
(9.2)

xi(t+ 1) = β ·

xi(t)− ∑
j∈N(i)

αi,j
(
xi(t)− xj(t)

)
+ (1− β) · xi(t− 1)

Here, β is independent of the iteration number t. From the above equations
we get

x(t+ 1) =

M x(t) if t = 0
β ·M x(t) + (1− β) · x(t− 1) if t > 0

(9.3)

For the process to converge, β must be in (0, 2). For the optimal choice of
βopt = 2/(1+

√
1− λ2) SOS converges in O

(
log(Kn)/

√
1− λ

)
rounds [MGS98]

78

9.2 New Results

which is in general faster than FOS; for graphs with some eigenvalue gap
(1 − λ)−1 = logω(1) n, the convergence time of SOS is almost quadratically
faster than FOS. Unfortunately, it can happen that the total outgoing flow
from a node exceeds its current load, which results in so-called negative load.

Heterogeneous Networks

Continuous FOS and SOS processes in the heterogeneous network model were
first studied in [EMP02]. In heterogeneous networks, processors have different
speeds and the aim is to distribute the load proportional to their speeds. The
minimum speed is 1, the maximum speed is smax, and s = s1 + · · · + sn.
Let the diagonal matrix S be defined by Si,i = si. Then the heterogeneous
FOS/SOS processes are defined as before, see equation (9.1) and equation
(9.3)), respectively, except the diffusion matrix is nowM = I−LS−1 where L is
the normalized Laplacian matrix of the graph [EMP02]. In [AB12], the authors
analyze a discrete FOS for homogeneous networks. In [EMP02] the authors
show that continuous FOS/SOS processes converge in O(log(Knsmax)/(1− λ))
and O

(
log(Knsmax)/

√
1− λ

)
rounds, respectively. In [EMS06], the authors

consider a discrete version of SOS too. They show that the euclidean dis-
tance between the discrete and continuous load vectors in the discrete version
is O

(
d · √n · smax/(1− λ)

)
.

9.2 New Results from [ABEK15]

Result I. In [ABEK15], we presented a general framework for rounding
continuous diffusion schemes to discrete schemes. Our approach estimates
the error between a continuous diffusion scheme and the rounded discrete
version first, similar to [RSW98]. Then we combine that error term with
martingales techniques similar to the ones used in [BCF+15] to bound the
deviation between the continuous scheme and a discrete scheme based on
randomized rounding. Note that the results in [RSW98] are only valid for a
class of homogeneous first order schemes and [BCF+15] analyzes a fixed first
order diffusion scheme with a specific transition matrix. The error estimation
introduced in [ABEK15] allows to derive results for a larger class of diffusion
algorithms (see Definition 4) in heterogeneous networks, including SOS.
In the homogeneous case the bounds from [ABEK15] are the same as the

best results for FOS. The bound is worse than the O(d) bound from [ABS16].
In [ABEK15], we bound the deviation of a class of very natural and stateless
algorithms. That is, the amount of load that is forwarded over an edge in step
t only depends on the load at the beginning of step t and the amount that was
sent in step t− 1. The approach of [ABS16] is not stateless as it simulates the
continuous process. They take the difference of the cumulative load that was
sent by the continuous process and the cumulative load that was sent by the
discrete process so far into account.

79

9 Load Balancing

Result II. In the second result from [ABEK15], we showed that random-
ized SOS has a deviation (after the balancing time of continuous SOS) of
O
(
d · log smax ·

√
logn/(1− λ)3/4

)
, where λ is the second largest eigenvalue

of M and smax is the maximum speed. Note that, assuming optimal β, the
runtime of SOS is in most cases much better than the runtime of FOS, more
precisely, O

(
log(Kn)/

√
1− λ

)
compared to O(log(Kn)/(1− λ)).

Result III. Finally, we showed in [ABEK15] that the continuous second
order scheme with optimal β will not generate negative load if at time t = 0
the minimum load of every node is at least O

(√
n ·∆/

√
1− λ

)
, where ∆ is

the difference between the initial maximum load and the average load. For
discrete SOS and graphs with proper eigenvalue gap we showed a bound of
O
(
(
√
n ·∆(0) + d2)/

√
1− λ

)
.

80

10
Framework for First Order and
Second Order Diffusion Schemes

In this chapter we state the results from [ABEK15] where we first generalized
the framework of Rabani et al. [RSW98] to a wider class of processes, see
Section 10.1, in order to obtain an estimation of the deviation of the discrete
process from its continuous version. The estimation is valid as long as the
continuous process is linear according to Definition 4. In [RSW98] the deviation
is expressed in terms of the diffusion matrix. In [ABEK15], however, we
presented an analysis from a different perspective which allowed us to obtain
essentially the same deviation formula for a larger class of processes. Our
analysis can be applied to second order processes and heterogeneous models as
well. In Section 10.2 we present the framework from [ABEK15] to transform
a continuous load balancing process C into a discrete process R(C) using
randomized rounding.
For simplicity we initially consider only first order schemes. Then, in

Section 10.3 and Section 10.4 we generalize the framework to second order
schemes.

10.1 First Order Diffusion Schemes

For a load balancing process A, we use xAi (t) to denote the load of a node i at
the beginning of the round t, and xA(t) = (xA1 (t), . . . , xAn (t)). For j ∈ N(i), we
define yAi,j(t) as the amount of load sent from i to j in round t. Observe that
this value is negative if load items are transferred from j to i. In this definition,
N(i) represents the set of neighbors of node i. Then yA(t) is the matrix with
yAi,j(t) as its entry in row i and column j. Note that each balancing process
A can be regarded as a function that, given the current state of the network,
determines for every edge e and round t the amount of load that has to be
transferred over e in t. Hence, we can regard yA(t) as the result of applying

81

10 Framework for Diffusion Schemes

a function A on the load vector, that is, yA(t) = A(xA(t)). Based on these
observations we formally define the discrete load balancing process as follows.

Definition 3. Let C be a continuous process. A process D is said to be a
discrete version of C with rounding scheme RD if for every vector x, we have
D(x) = RD(C(x)) where RD is a function that rounds each entry of the matrix
to an integer.

A straight forward example for such a rounding scheme would be the rule
to always round down. Alternatively, one could decide randomly between
rounding up or down. In Section 10.2, we will describe the more elaborate
algorithm called randomized rounding from [ABEK15] that can be applied to
a wide range of continuous load balancing schemes.
Note that any load balancing process must fulfill the property of load

conservation, that is, the total load present in the system at a round t must
not diverge from the initial total load. Furthermore, the analysis performed in
[ABEK15] requires that the process exhibits a linearity property according to
the following definition.

Definition 4 (Linearity). A diffusion process A is said to be linear if for all
x,x′ ∈ Rn and a, b ∈ R we have A(ax + bx′) = a ·A(x) + b ·A(x′).

Lemma 27. Both, FOS and SOS defined in Section 9.1 are linear.

For the following definition, we will use î to denote the unit vector of length
n which has 1 as its i-th entry and 0 for all other entries.

Definition 5 (Contributions). Let x and x′ be the load vectors obtained from
applying C for t rounds on î and ĵ, respectively. For two fixed nodes i and k
and j ∈ N(i) the contribution of edge (i, j) on node k after t rounds is defined
as

CCk,i→j(t) = xk − x′k .

The next lemma provides a general form of the FOS deviation formula of
[RSW98] which serves as a basis for analyzing several discrete FOS processes.
Let C be a continuous process and D its discrete version. Let furthermore be
the rounding error defined as ei,j(t) = Ŷi,j(t)− yDi,j(t), where Ŷ (t) represents
C(xD(t)).

Lemma 28. Consider a linear diffusion process C and its discrete version D
with an arbitrary rounding scheme. Then, for an arbitrary node k and round t
we have

xDk (t)− xCk (t) =
t∑

s=1

∑
{i,j}∈E

ei,j(t− s) CCk,i→j(s) .

82

10.2 Randomized First Order Scheme

10.2 Randomized First Order Scheme

In this section we give an overview over the analysis of the randomized round-
ing scheme for a general class of continuous load balancing algorithms from
[ABEK15]. The technique is based on the results by Berenbrink et al. [BCF+15]
where a fixed discrete FOS process using randomized rounding is analyzed for
for homogeneous d-regular graphs. Their algorithm is based on a continuous
process in which every node sends a 1/(d + 1)-fraction of its load to each
neighbor. Initially, the discrete algorithm rounds xi/(d+ 1) down if it is not
an integer. This leaves (d+ 1) · bxi/(d+ 1)c surplus tokens on node i, which
they call excess tokens. The excess tokens are then distributed by sending the
tokens to neighbors which are uniformly sampled without replacement.
In [ABEK15] we applied this technique in a much more general way. We

introduced a randomized framework that converts a general class of continuous
processes to their discrete versions using randomized rounding.

The Randomized Rounding Algorithm

For a ∈ R we will use {a} to denote the fractional part a − bac. Let i be
an arbitrary but fixed node and let Ŷ (t) represent C(xD(t)). For each edge
e = {i, j} let the corresponding Ŷi,j(t) be the load that would be sent over e
by the continuous process C. The rounding scheme works as follows. First,
it rounds Ŷi,j(t) down for all the edges. This leaves r =

∑
j:Ŷi,j(t)≥0{Ŷi,j(t)}

excess tokens on node i. Then it takes dre additional tokens and sends each
of them out with a probability of r/dre, independently. With the remaining
probability the excess tokens remain on node i. The tokens which do not
remain on i are sent to a neighbor j with a probability of {Ŷi,j(t)}/r. Formally,
this algorithm is specified in Algorithm 11.1 in Chapter 11.
The deviation bound from [ABEK15] is expressed in terms of the refined

local divergence ΥC(G), which is a function of both the algorithm and the
graph, defined as follows.

ΥC(G) = max
k∈V

(∞∑
s=0

n∑
i=1

max
j∈N(i)

(
CCk,i→j(s)

)2)1/2

Observe that ΥC(G) is a generalization of the refined local divergence Υ(G)
introduced in [BCF+15]. Based on this refined local divergence we showed in
[ABEK15] the following result.

Lemma 29. Let C be a continuous FOS and let R = R(C) be a discrete FOS
using our randomized rounding algorithm. In an arbitrary round t we have
with high probability∣∣∣XR

k (t)− xCk (t)
∣∣∣ = O

(
ΥC(G) ·

√
d logn

)
.

83

10 Framework for Diffusion Schemes

The proof of Lemma 29 relies on the fact that FOS is a linear process, see
Lemma 27, and therefore a similar analysis as in [BCF+15] can be conducted.
The difference is that in [ABEK15] we use the contributions CCk,i→j(t) instead
of the diffusion matrix.
Using Lemma 29 one can also obtain concrete results for randomized FOS

processes as stated in the following corollaries. The following result holds for
the homogeneous case and a special class of algorithms where αi,j = 1/(γd).
Recall that d is the maximum degree. The same result was already shown
in [SS12].

Corollary 30. Assume s1 = · · · = sn and αi,j = 1/(γd). Let C be a contin-
uous FOS process and let R = R(C) be a discrete FOS process based on the
randomized rounding algorithm applied on C. Then

(1) ΥC(G) = O
(√

γd/(2− 2/γ)
)
.

(2) For any round t we have with high probability∣∣∣xRk (t)− xC
k (t)

∣∣∣ = O
(√

γd

2− 2/γ ·
√
d logn

)
.

In [SS12] the authors applied a potential function in order to estimate ΥC(G).
This proof relies heavily on the fact that the transition probabilities are uniform
over all edges, which is not the case for the heterogeneous model or when αi,j
depends on di and dj . The next result from [ABEK15] is more general and
applies to these cases as well.

Theorem 31. Let C be a continuous FOS process and let R = R(C) be a
discrete FOS process based on the randomized rounding algorithm applied on C.
Then

(1) ΥC(G) = O
(√

d · log smax/(1− λ)
)
.

(2) For any round t we have with high probability

∣∣∣xRk (t)− xC
k (t)

∣∣∣ = O

d ·
√

logn · log smax
1− λ

 .

10.3 Second Order Diffusion Schemes

In this section we state the results from [ABEK15] for SOS, where we showed
that after some slight adjustments the framework from Section 10.1 can be
applied to second order processes on heterogeneous networks as well. Recall that
for a second order process C the flow yC(t) is determined based on xC(t) and
yC(t− 1). More formally, yC(t) = C(xC(t), yC(t− 1)). Thus, Definition 6 and
Definition 7 for SOS from [ABEK15] for linearity and contributions, respectively,
also incorporate yC(t− 1). We again use î to denote the unit vector of length
n which has 1 as its i-th entry and 0 for all other entries.

84

10.4 Randomized Second Order Scheme

Definition 6 (Linearity). A diffusion process A is said to be linear if for
all x,x′ ∈ Rn, y,y′ ∈ Rn×n and a, b ∈ R we have A(ax + bx′, ay + by′) =
aA(x,y) + bA(x′,y′).

Definition 7 (Contributions). Let x(0) = x′(0) = î, y(0) = 0n×n and let y′(0)
be all zero except y′i,j(0) = 1, such that x(1) = î and x′(1) = ĵ. Let x(t + 1)
and x′(t + 1) be the load vectors obtained from applying C for t rounds on
(x(1),y(0)) and (x′(1),y′(0)), respectively. Then the contribution of the edge
(i, j) on a node k after t rounds is defined as

CCk,i→j(t) = xk(t)− x′k(t) .

In [ABEK15], the contributions are expressed based on a sequence of matrices
Q(t) defined below, whose role in error propagation is similar to that of the
diffusion matrix in FOS. In the corresponding proofs from [ABEK15], we first
gave an upper bound in terms of the contributions CCk,i→j(t). Then, in order to
obtain more concrete bounds, we estimated and upper bounded CCk,i→j(t).

Q(t) =


I if t = 0
β ·M if t = 1
β ·M Q(t− 1) + (1− β) ·Q(t− 2) if t ≥ 2

We now state the bounds on the deviation between continuous SOS and its
rounded version from [ABEK15]. Note that the authors of [EMS06] show the
following similar bound on the deviation.∥∥∥xD(SOS)(t)− xSOS(t)

∥∥∥
2

= O(d
√
nsmax/(1− λ))

Note that the bound on the deviation of FOS, O
(
d
√
smax logn/(1− λ)

)
, is

smaller.

Lemma 32. Consider a discrete SOS process D = D(SOS) with optimal β
and a rounding scheme that rounds a fractional value to either its floor or its
ceiling. Then for arbitrary t ≥ 0 we have∣∣∣xDk (t)− xSOS

k (t)
∣∣∣ = O(d

√
nsmax/(1− λ)) .

10.4 Randomized Second Order Scheme

In [ABEK15] we argued that the proof of Lemma 29 holds for the more general
definitions of linearity and contributions for SOS. The following lemma was
used to show the next theorem similarly to FOS.

Lemma 33. In the setting of Section 10.3 for an arbitrary round t we have
with high probability∣∣∣XR

k (t)− xCk (t)
∣∣∣ = O

(
ΥC(G) ·

√
d logn

)

85

10 Framework for Diffusion Schemes

In the following theorem from [ABEK15] we bounded the deviation between
continuous and discrete SOS using the randomized rounding algorithm from
Section 10.2.

Theorem 34. Let R = R(SOS) be a discrete SOS process with optimal β
obtained using our randomized rounding algorithm. Then
(1) ΥSOS(G) = O

(√
d · log smax/(1− λ)3/4

)
.

(2) The deviation of R from the continuous SOS in an arbitrary round t is
with high probability

∣∣∣xRk (t)− xSOS
k (t)

∣∣∣ = O
(
d · log smax ·

√
logn

(1− λ)3/4

)
.

10.5 Negative Load in Second Order Schemes

In second order schemes, it might happen that nodes do not have enough load
to satisfy all their neighbors’ demand. We refer to this situation as negative
load. Naturally, one might ask by how much a node’s load may become negative.
In [ABEK15], we studied the minimum amount of load that nodes need in order
to prevent this event. In the following we state a bound on the minimum load
of every node that holds during the whole balancing process. More precisely, if
every processor has such a minimum load at the beginning of the balancing
process, there will be no processor with negative load. Hence, these bounds
can also be regarded as bounds on the minimum load of every processor that
suffices to avoid negative load.
Let x̄ = (x̄1, . . . , x̄n) be the balanced load vector. We define ∆(t) =
‖x(t)− x̄‖∞ and Φ(t) = ‖x(t)− x̄‖2, where ‖·‖ is the norm operator. Then
the following observation estimates the load at the end of every step.

Observation 35. In continuous SOS with β = βopt we have

x(t) ≥ −
√
n ·∆(0) .

In [ABEK15], we noted that the load during a single balancing step can be
lower than the bound given in Observation 35, since in this observation we
only consider snapshots of the network at the end of each round. It might be
possible that a node has to send more load items to some of its neighbors than
it has at the beginning of round t, but still its load remains positive at the
end of round t. This can happen if it also receives many load items from other
neighbors in round t. To study the negative load issue it is helpful to divide
every round into two distinct steps, where in the first step all nodes send out
their outgoing flows. In the second step, the nodes receive incoming flows sent
by their neighbors in the first step. At the end of the first step, all the outgoing
flows are sent out but no incoming flow is yet received. To prevent negative
load the load of every node has to be non-negative at this point. In [ABEK15],

86

10.5 Negative Load in Second Order Schemes

we call this state the transient state and use x̆i(t) to denote the load in the
transient state. Note that we always have x̆i(t) ≤ xi(t) and x̆i(t) ≤ xi(t+ 1).
The following lemma provides a lower bound on x̆i(t).

Lemma 36. In a continuous SOS process with optimal β = βopt we have

x̆i(t) ≥ −O
(√

n ·∆(0)/
√

1− λ
)
.

The following result from [ABEK15] shows that the asymptotic lower bound
obtained in Observation 35 also holds for the randomized discrete second-order
process R = R(SOS) when smax is polynomial in n and d/(1−λ)3/4 = O

(
n0.5−ε)

for constant ε > 0. These properties hold, for example, in tori with four or
more dimensions, hypercubes, and expanders. In this case we can get the
following lower bound.

Theorem 37. In a discrete SOS process R = R(SOS) with β = βopt, smax
polynomial in n, and d/(1− λ)3/4 = O

(
n0.5−ε) for some ε > 0, we have

x̆Ri (t) ≥ −O
(√

n ·∆(0) + d2
√

1− λ

)
.

87

11
Simulation Results

In this chapter we present empirical results for several balancing algorithms.
We simulated discrete versions of both, first order and second order balancing
schemes, where we use randomized rounding as described in Section 10.2 for
the discretization. We also give a formal definition of the randomized rounding
algorithm in Algorithm 11.1. Our main goal is to see under which circumstances
SOS outperforms FOS.

Algorithm RandomizedRounding(continuous scheme C, load vector x)
/* start with the continuous flow */
let Ŷ (t)← C(xD(t));
at each node i do

let r ← 0;
/* send out integral flows */
for each edge e = (i, j) where Ŷi,j(t) > 0 do

/* Ŷi,j(t) is the load that would be sent over edge e
by the continuous process C */

send bŶi,j(t)c tokens to node j;
/* Recall that {a} = a− bac for any a ∈ R */
r ← r + {Ŷi,j(t)}; /* collect excess load */

/* send out excess load randomly */
for excess token 1 to dre do

with probability r/dre do
for each edge e = (i, j) let pj ← {Ŷi,j(t)}/r;
sample neighbor k according to probabilities pj ;
send token to node k;

else
the token remains at node i;

Algorithm 11.1: The randomized rounding algorithm generates discrete flows from
continuous diffusion schemes.

89

11 Simulation Results

Graph Size Parameter β

Two-Dimensional Torus n = 1000× 1000 1.9920836447
Two-Dimensional Torus n = 100× 100 1.9235874877
Random Graph (CM) n = 106, d = blog2 nc 1.0651965147
Random Geometric Graph n = 104, r = 4

√
logn 1.9554636334

Hypercube n = 220 1.4026054847

Table 11.1: graph classes and parameters used in the simulation

We consider different networks which are based on various graph classes.
A complete list of all graph types and parameters used for the simulation
can be obtained from Table 11.1. Our simulation tool is highly modularized
and supports various load balancing schemes and rounding procedures. It can
be used to simulate the load balancing process using multiple threads on a
shared-memory machine. To fully utilize the capability of modern CPUs we
used OpenMP to generate code that performs suitable instructions in parallel.
The simulation was implemented using the C++ programming language. Our
tests were conducted on an Intel Core i7 machine with 4 cores and 8 GB system
memory. Some simulations of denser graph classes were also run on machines
equipped with 64 AMD Opteron cores and 1 TB memory.
If not stated otherwise, we initialized our system by assigning a load of

1000 · n load tokens to a fixed node v0, where n is the number of nodes of the
network, and the load of all other nodes was set to zero. Our data plotted in
Figure 11.2, however, indicate that the amount of initial load does only have
limited impact on the behavior of the simulation, especially once the system
has converged.

We use the following metrics to measure the quality of the load distribution.
1. Maximal local load difference. This is the maximum load difference

between the nodes connected by an edge. That is, the maximum local
load difference for given load vectors x(t) in a round t is defined as

φlocal(x(t)) = max
{u,v}∈E

{|xu(t)− xv(t)|} .

2. Maximum load. This is the maximum load of any node minus the
average load x.

φglobal(x(t)) = ∆(t) = max
v∈V
{xv(t)} − x

3. Potential based on 2-norm. We compute the value of the potential
function φt proposed by Muthukrishnan et al. [MGS98] which is defined
as

φt = φ(x(t)) =
∑
v∈V

(xv(t)− x)2

In our plots we divided this potential by n.

90

11.1 Results for the Torus

4. Impact of eigenvectors on load. We initially compute the eigenvec-
tors of the diffusion matrix and solve in each round t the the linear
system V · a = x(t), which is defined over the orthonormal matrix of n
eigenvectors V and the load vector x(t). We then identify the leading
eigenvector, that is, the eigenvector with the largest |ai|. The coefficients
ai for i = 2, . . . , n describe together with the eigenvectors the load im-
balance completely [GV61]. Observe that the coefficient ai in round t
multiplied with the corresponding eigenvalue µi yields the coefficient in
the following round t+ 1. Therefore, the largest coefficient governs the
convergence rate in that step.

5. Remaining imbalance. This is the remaining imbalance of the con-
verged system (see [ES10]), that is, the number of tokens above average
once this number starts to fluctuate and does not visibly improve any
more. This imbalance does not occur in continuous systems and is due
to the applied rounding in discrete systems.

In this first section we focus on the torus. For results w.r.t. other graph classes
see Section 11.2.

11.1 Results for the Torus

Our main results are shown in Figure 11.1, where we plotted the simulation
results using the second order scheme with randomized rounding in a two-
dimensional torus consisting of 1000× 1000 nodes and an average load of 1000.
As in all following plots, the x-axis represents the number of rounds. The plot
shows the maximum load minus the average load, the maximum local load
difference, and the potential function φt on the y-axis. As a comparison, a
simulation run using only first order scheme is shown as well.
It is known that the second order scheme is faster than the first order

scheme w.r.t. the convergence time of the load balancing system in graphs
with a suitable eigenvalue gap. However, our simulations indicate that for
SOS the remaining maximal load difference does not drop below a certain
threshold. Therefore, we implemented the following approach to decrease the
load differences even further. First we perform a number of steps using the fast
second order scheme. Then, every node synchronously switches to first order
scheme. We considered two different scenarios. In the first case we switched to
FOS early after 2500 SOS steps. This number of steps corresponds roughly
to the end of a phase of exponential decay in the potential function. In the
second case we switched to FOS rather late at 3000 steps, allowing the system
to run for a few hundred additional steps using the second order scheme.

In both cases we observed a significant drop in both, the local and the global
load differences. That is, the values for the load differences do not drop below
10 when using SOS. Once the simulation is switched to FOS, the maximum
local load difference converges to a value of 4 and the maximum load minus the

91

11 Simulation Results

100

101

102

103

104

105

106

107

108

109

 0 1000 2000 3000 4000 5000

Maximum Load - Average Load
Maximum Local Load Difference

Potential Function
FOS

Figure 11.1: The maximum load minus the average load is plotted in blue, the maximum
local load difference in red and the potential function φt in yellow, using SOS on a two-
dimensional torus size 1000 × 1000. As a comparison, the green line shows the maximum
load minus the average load using FOS.

average load drops to 7. This is shown in Figure 11.4, and a direct comparison
is shown in Figure 11.5.

In the left plot in Figure 11.4 we furthermore observe that the load differences
continue to diminish for about 200 steps (during steps 2500 to 2700) when we
switch to FOS after 2500 steps. When we switch to FOS after 3000 steps (right
plot in Figure 11.4) a drop can still be observed, however, the resulting load
differences remain at a low level. To explain this behavior of the load balancing
procedure we analyzed the impact of the eigenvectors of the diffusion matrix
on the load balancing process. Recall that the diffusion matrix M = (Mij) is
defined as

Mij =

αij if i 6= j

1−
∑
i 6=j αij if i = j

with αij = 1/(max{deg(i), deg(j)}+ 1) if node i is adjacent to node j and 0
otherwise.
We used the LAPACK library [ABB+99] to compute the eigenvalues and

corresponding eigenvectors of M . The same library was then used to solve the
set of linear systems

V · a = W

for a matrix of coefficients a, where V denotes a matrix of eigenvectors of M
and W = (x(t)) consists of row vectors x(t) as defined in Section 9.1 containing
the loads of the system at every round t. The resulting coefficients in a give

92

11.1 Results for the Torus

the impact of the corresponding eigenvectors in each round on the load. The
results are shown for the torus of size 100× 100 in the two plots of Figure 11.7.
The first plot shows the maximum of these coefficients. In the simulation run
corresponding to this plot we observed that starting roughly after 100 rounds
this leading eigenvector corresponds to a4 up until roughly round 700. After
that time there is no clear leading eigenvector. This can be observed from the
right plot in the same figure, where the currently leading coefficient is plotted
for each round.
It seems reasonable to switch from SOS to FOS once the impact of the

leading eigenvector drops below some threshold. This information, however,
requires a global view on the load balancing network and therefore cannot be
used in a distributed approach. In real-world applications also the trade-off
between a remaining imbalance and the time required to balance the loads
must be considered. We therefore investigate the effect of the time step when
switching from SOS to FOS.
In Figure 11.8 we plotted the maximum load minus the average load for

second order scheme and for an adaptive approach where we switched to FOS
after a number of SOS rounds. The impact of the leading eigenvector (and the
loss thereof) explains the data shown in Figure 11.8. Our data indicate that
once the impact of the leading eigenvector drops below a certain threshold in a
round R, there is no difference in the behavior of the system when switching to
FOS in some consecutive round r ≥ R. Independently of the round R, however,
we observe a significant drop in the maximum load.

Note that the maximum local load difference seems to be a good indicator for
switching from SOS to FOS. Furthermore this local property is also available
in a distributed system with only limited global knowledge.

In Figure 11.1 we also observe strong discontinuities of the local and global
maximum load differences which occur approximately every 1200 to 1300 steps.
To explain these discontinuities we visualized the load balancing process on the
two-dimensional torus in Figure 11.9 as follows. We rendered a raster graphic
of size 1000×1000 pixels per round. In the graphic each pixel represents a node
of the torus such that neighboring pixels are connected in the network and
border-pixels are connected in a periodic manner. We now set the pixels’ colors
to correspond to the nodes’ loads, that is, a pixel is shaded bright if its load is
close to the average load and dark otherwise. In the visualization shown in
Figure 11.9 the initial load is placed at the node with ID 0, which corresponds
to the top-left pixel. Since the border-pixels wrap around, the loads spread
in circles from all four corners, forming the wavefronts in the graphic. Our
visualizations now indicate that the discontinuities in the local load differences
and the maximum load occur whenever these wavefronts collapse at the center
of the graphic, that is, when the center node gets load for the first time. This
is a consequence of the second order scheme since nodes continue to push loads
towards the center pixel, even though this pixel may already have a load above
average. Note that these discontinuities also occur in the idealized scheme and

93

11 Simulation Results

for smaller tori, see Figure 11.6 and Figure 11.8, respectively.
We furthermore rendered a video of the load balancing process (available

online, see [ABEK14b]) which shows the behavior of the system in an intuitive
way and thus helps understanding these discontinuities. Further visualizations
in Figure 11.11 show the impact of the first order scheme. That is, after
applying FOS steps the rendered image becomes more smooth, in contrast to
the SOS steps where our visualization shows a significant amount of noise.
To gain further insights we also implemented a simulation of the idealized

load balancing procedure where loads can be split up in arbitrary small portions
and any real fraction of load can be transmitted. This simulation is based
on double precision floating point variables that represent the current load
at a node. Therefore, a quantification takes place which introduces an error.
However, we observed that in our setup the total error over all loads is small
and thus can be neglected. A comparison of the idealized and discrete processes
can be found in Figure 11.6.

11.2 Further Networks

For random regular graphs constructed using the configuration model [Wor99]
and the hypercube we observe only a limited improvement of SOS compared to
FOS, see Figure 11.12 and Figure 11.13, respectively. That is, the number of
steps required to balance the loads up to some additive constant is only slightly
larger when using FOS instead of SOS. For random graphs the remaining
imbalance is the same for both FOS and SOS. For the hypercube our results
indicate that the remaining imbalance using FOS is by one smaller than in
the case of the SOS process. Hence, our data only show a negligible difference
between FOS and SOS in these graphs. This can be related to the second largest
eigenvalue of the diffusion matrix, which is (2 + o(1))/

√
d for random graphs

and 1 − 2/(logn + 1) for hypercubes (compared to approximately 1 − π2/n
for the torus) [CDS80]. Note that the spectral gap is also reflected in the
corresponding values for β in Table 11.1.
The random geometric graphs were generated by assigning each node a

coordinate pair in the range [0,
√
n]2 uniformly at random and connecting

nodes vi and vj if and only if d(vi, vj) ≤ 4
√

logn, where d denotes the euclidean
distance. Remaining small isolated components were connected to the closest
neighbor in the largest component of the graph. Even though we observe a less
pronounced potential drop in random geometric graphs, the behavior of FOS
and SOS in these graphs is very similar to the behavior in the torus graphs,
see Figure 11.14 and Figure 11.15.

94

11.2 Further Networks

100

101

102

103

104

105

106

107

108

109

 0 1000 2000 3000 4000 5000

10
100

1000

Figure 11.2: The plot shows the maximum load minus the average load, the maximum
local load difference and the potential function on a two-dimensional torus of size 1000× 1000.
Three different initial loads were used with average loads of 10, 100, and 1000, colored from
light to dark.

100
101
102
103
104
105
106
107
108
109

 0 1000 2000 3000 4000 5000

FOS
SOS

100
101
102
103
104
105
106
107
108
109

 0 1000 2000 3000 4000 5000

FOS
SOS

Figure 11.3: a comparison of the maximum load minus the average load using SOS (blue)
and FOS (green) on a two-dimensional torus of size 1000× 1000. The first plot shows discrete
loads and randomized rounding, the second plot shows an idealized scheme.

95

11 Simulation Results

100

101

102

103

104

 2000 2200 2400 2600 2800 3000
100

101

102

103

104

 2600 2800 3000 3200 3400

Figure 11.4: The plots show the maximal local difference in red, the maximal load minus
the average load in blue, and the potential function φt in yellow. The simulation switches
from second order scheme to first order scheme in the left and the right plot after 2500 and
3000 rounds, respectively.

100

101

102

103

104

 2000 2200 2400 2600 2800 3000

SOS
FOS

100

101

102

103

104

 2600 2800 3000 3200 3400

SOS
FOS

Figure 11.5: The plots show a direct comparison of the same data presented in Figure 11.4.
The blue data points show the maximal load minus the average load using only a SOS
approach while the green data points show the maximal load minus the average load when
switching to FOS. Again, the switch has been conducted after 2500 steps in the left and 3000
steps in the right plot.

10-2

10-1

100

101

102

103

104

105

106

 0 1000 2000 3000 4000 5000
10-8

10-7

10-6

10-5

10-4

 0 1000 2000 3000 4000 5000

Figure 11.6: a comparison of the idealized second order scheme in green with a SOS using
randomized rounding in blue. The idealized version is based on IEEE754 double precision
floating point values as loads. The data points show the maximum load of the system minus
the average load. The right plot shows the absolute value of the total load in the system at
round t minus the initial total load, that is, the absolute error.

96

11.2 Further Networks

10-2

10-1

100

101

102

103

104

105

106

 0 200 400 600 800 1000

a4
-a4

max |ai|

0

n

 0 200 400 600 800 1000

Figure 11.7: The left plot shows the impact of eigenvectors on the load on a two-dimensional
torus of size 100× 100. The maximum over all coefficients, maxi{|ai|}, is shown along with
a4. In the right plot the currently leading coefficient is shown, that is, a black point indicates
that in the given round (x-axis) the corresponding eigenvector (y-axis) has maximal impact.

100

101

102

103

104

 0 200 400 600 800 1000
100

101

102

103

104

 0 200 400 600 800 1000

SOS
FOS 300
FOS 500
FOS 700
FOS 900

Figure 11.8: a plot showing the effect of switching from SOS to FOS on a two-dimensional
torus of size 100× 100. The left plot shows the maximum load minus the average load in
blue and the maximal local load difference in red. After 500 SOS rounds the process switches
to a FOS approach. In the right plot various time steps to switch from SOS to SOS are used.
All data points show the current maximum load minus the average load.

97

11 Simulation Results

Figure 11.9: a visualization of the load balancing network (a two-dimensional torus of size
1000 × 1000) after 1100 steps. Each pixel corresponds to one node which has edges to its
4-neighborhood and is shaded such that a light pixel has a load close to the average load and
a dark pixel a load close to either the maximum or minimum load of the system. Further
time steps are rendered in Figure 11.10.

98

11.2 Further Networks

Figure 11.10: The figure shows the same visualization as Figure 11.9, rendered after 500,
1000, 1200, and 1400 steps. The network is modeled as a two-dimensional torus. Each pixel
corresponds to one node which has edges to its 4-neighborhood. All pixels are shaded in an
adaptive way, that is, a light gray or white pixel indicates a load close to the average load
and a dark gray or black pixel indicates a load close to either the maximum or minimum
load of the system.

Figure 11.11: Above figures show the same load balancing network as Figure 11.9. A pixel
colored white indicates a node with optimal load, a pixel colored black corresponds to a
load that is more than 10 units away from the optimal value. Observe that in none of the
above images such a load (which exceeds the average load by more than 10 tokens) occurs.
In the center region of the left image there are several pixels which have load at least 9,
whereas in the right image the maximum load exceeds the average load by at most 7. The
first visualization has been rendered after 3000 SOS steps. The second image and the third
image show the same network after additional 100 and 1000 FOS steps, respectively.

99

11 Simulation Results

10-1

100

101

102

103

104

105

106

107

108

109

 0 20 40 60 80 100

Maximum Load - Average Load
Maximum Local Load Difference

Potential Function
Maximum Load - Average Load FOS

Maximum Load FOS Round 12
Potential Function FOS Round 12

Figure 11.12: load balancing simulation on a random graph in the configuration model of
size 106 nodes with d = 19

10-1

100

101

102

103

104

105

106

107

108

109

 0 50 100 150 200

Maximum Load - Average Load
Maximum Local Load Difference

Potential Function
Maximum Load - Avgerage Load FOS

Maximum Load FOS Round 50
Potential Function FOS Round 50

Figure 11.13: load balancing simulation on a hypercube with n = 220 nodes. The green
data points show the effect of switching to FOS after 32 steps.

100

11.2 Further Networks

100

101

102

103

104

105

106

107

 0 200 400 600 800 1000

Maximum Load - Average Load
Maximum Local Load Difference

Potential Function
Maximum Load - Average Load FOS

Maximum Load FOS Round 500
Potential Function FOS Round 500

Figure 11.14: load balancing simulation on a random geometric graph with 10.000 nodes
in [0,

√
n]2 with connectivity radius

√
logn.

10-2

10-1

100

101

102

103

104

105

106

107

 0 200 400 600 800 1000

Maximum Load - Average Load
Maximum Local Load Difference

Potential Function
Maximum Load FOS Round 500

Potential Function FOS Round 500
|α4|

max |αi|

Figure 11.15: load balancing simulation on a two-dimensional torus of size 100× 100. The
purple line shows the maximum coefficient max{|αi|} for the impact of the eigenvectors on
the load. This coefficient is α4, starting approximately in round 100 and up to approximately
round 700. The black dots also shown in this plot in the range [102, 103] represent the leading
coefficient, where α1 is plotted with a value of 102 and αn is plotted with a value of 103,
with a linear scale between them. Observe that after approximately 700 rounds no single
eigenvector can be identified that has a leading impact on the load.

101

IIIPart III

The Deterministic Majority
Voting Process

Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Natale: Brief
Announcement: On the Voting Time of the Deterministic Majority Process.
In Proceedings of the 29th International Symposium on Distributed
Computing (DISC), 2015.
Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Natale: On the
Voting Time of the Deterministic Majority Process. In Proceedings of the
41st International Symposium on Mathematical Foundations of Computer
Science (MFCS), 2016. doi: 10.4230/LIPIcs.MFCS.2016.55.

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.55

12
Introduction

Distributed voting is a fundamental problem in distributed computing. We are
given a network of players modeled as a graph. Each player in the network
starts with one initial opinion out of a set of possible opinions. Then the voting
process runs either synchronously in discrete rounds or asynchronously accord-
ing to some activation mechanism. During these rounds in the synchronous
case, or upon activation in the asynchronous case, the players are allowed to
communicate with their direct neighbors in the network with the main goal
to eventually agree on one of the initial opinions. If all nodes agree on one
opinion, we say this opinion wins and the process converges. Usually, voting
algorithms are required to be simple, fault-tolerant, and easy to implement
[HP01, Joh89].
In this part, we study the deterministic binary majority process which is

defined as follows. We are given a graph G = (V,E) where each node has one
of two possible opinions. The process runs synchronously in discrete rounds
where each node in every round computes and adopts the majority opinion
among all of its neighbors. It is known that this process always converges
to a two-periodic state. The convergence time of a given graph for a given
initial opinion assignment is the time required until this two-periodic state is
reached. In this work we improve the bounds on the convergence time for given
initial opinions and then we analyze the voting time of the process, which is
the maximum convergence time over all possible initial opinion assignments.

In distributed computing, various variants of the majority process are used
in fault-tolerant distributed consensus algorithms. In the analysis of structures
of large networks, the deterministic binary majority process has widespread
applications in the study of so-called influence networks [FKW13]. Early
applications can be found in distributed databases [Gif79]. Further fields
include sensor networks [BTV09], the analysis of opinions in social networks
[MT14], social behavior in game theory [DP94], chemical reaction networks
[Dot14], neural and automata networks [GM90], and cells’ behavior in biology

105

12 Introduction

[CC12]. Variants of the deterministic binary majority process have been used
in the area of distributed community detection [RAK07, KPS13, CG10]. In this
context, the proposed community detection protocols exhibit a convergence
time which can be bounded by the voting time of the deterministic binary
majority process.

Among its many probabilistic variants that have been previously considered,
plenty of work concerns randomized voting where in each step every node is
allowed to contact a random sample of its neighbors and updates its current
opinion according to the majority opinion in that sample [AF02, BMPS04,
CEOR13, DW83, HP01, HL75, LN07, Lig85, Mal14, Oli12].

In an algorithmic game theoretic setting, the deterministic binary majority
process can be seen as the simplest discrete preference games [CKO13]. In this
game theoretic perspective, the existence of monopolies has been investigated
[ACF+15]. A monopoly in a graph is a set of nodes which start with the
same opinion and cause all other nodes to eventually adopt this opinion. In
the distributed computing area, a lot of research has been done to find small
monopolies, see for example [Pel02]. It has also been shown that there exist
families of graphs with constant-size monopolies [Ber01]. More recently, classes
of graphs which do not have small monopolies have been investigated [Pel14].
Many of these results relate to the voting time of the deterministic binary

majority process. It was proven independently by Goles and Olivos [GO80],
and Poljak and Sůra [PS83] with the same potential function argument that
the deterministic binary majority process always converges to a two-periodic
state. They later (independently) refined and generalized the potential function
argument in several directions [Gol89, GO88, GFP85, PT86]. Their proof was
popularized in the Puzzled columns of Communications of the ACM [Win08a,
Win08b]. Recently, the same problem has been studied on infinite graphs w.r.t.
a given probability distribution on the initial opinion assignments [BCO+14].
In [TT15], the authors provide a bound on the number of times a node in a
given bounded-degree graph changes its opinion. Both [BCO+14] and [TT15]
also investigate the probability that in the two-periodic state all nodes hold
the same opinion.

As for the maximum time it takes for the process to converge over all initial
opinion assignments, Frischknecht et al. [FKW13] note that the potential
argument by Goles et al. [GO80, PS83, Win08b] can be used to prove an
O(|E|) upper bound. They furthermore show that this upper bound is tight
in general, by designing a class of graphs in which the deterministic binary
majority process takes at least Ω

(
|V |2

)
rounds to converge from a given initial

opinion assignment. This construction has later been extended to prove lower
bounds for weighted and multi-edges graphs by Keller et al. [KPW14].

Once the process converges to the two-periodic state, each node stays either
with its own opinion or changes its opinion in every round. A lot of attention
has been given to the opinions to which the deterministic binary majority
process converges. However, regarding the voting time, besides the O(|E|)

106

12.1 Preliminaries

upper bound that follows from the result by Goles et al. [GO80, PS83, Win08b],
no further upper bound on the voting time that holds for any initial opinion
assignment has been proved. Still, one can observe that in many graphs the
voting time is much smaller than O(|E|). For example, the voting time of the
complete graph is one.
We show that for the deterministic binary majority process the question

whether the voting time is greater than a given number is NP-hard. While
for many generalizations of the deterministic binary majority process many
decision problems are known to be NP-hard, at the best of our knowledge this
is the first NP-hardness proof that does not require any additional mechanisms
besides the bare majority rule of the deterministic binary majority process.
However, it is possible to obtain upper bounds on the voting time which can
be computed in linear time. A module of a graph is a subset of vertices S such
that for each pair of nodes u, v ∈ S it holds that N(u) \ S = N(v) \ S, where
N(u) denotes the set of neighbors of a node u. By carefully exploiting the
structure of the potential function by Goles et al. we leverage the particular
behavior that certain modules, which we call families, exhibit and prove that
the voting time of a graph can be bounded by the voting time of a smaller
graph that can be constructed in linear time by contracting suitable vertices.
We obtain a new upper bound that asymptotically improves the previous

O(|E|) bound on graph classes which are characterized by a high number of
modules that are either cliques or independent sets. An example for such
graphs is the Turán graph T (n, r), formed by partitioning a set of n vertices
into r subsets of (almost) equal sizes and connecting two vertices by an edge
whenever they belong to different subsets. For the convergence time of the
Turán graph T (n, r) we obtain an O

(
r2) bound, compared to the previously

best known bound of O
(
n2). Also, for the convergence time of full d-ary trees

we get an O(|V |/d) bound, compared to O(|V |) originating from the O(|E|)
bounds. Further examples include the clique and the star graph, for which
our bound gives a constant O(1) convergence time. Our bound relies on a
well-known graph contraction technique based on identifying equivalent nodes.
This technique is used in other related disciplines as well, including parallel
and distributed computing. See, for example, the notion of identical nodes in
the work by Sarıyüce et al. [SSKÇ13].

12.1 Preliminaries

We are given a graph G = (V,E) and an initial opinion assignment defined as
follows.

Definition 8. An opinion assignment ft in round t ≥ 0 is a function ft : V →
{0, 1} which assigns for each v ∈ V one out of two possible opinions. We will
also denote opinion 1 as white and opinion 0 as black. The opinion assignment
at time t = 0 is called initial opinion assignment.

107

12 Introduction

The deterministic binary majority process can be defined as follows. Let v be
an arbitrary but fixed vertex and N(v) the set of neighbors of v. To compute
ft+1(v) the node v computes the majority opinion of all of its neighbors in
N(v). In the case of a tie the node behaves lazily, that is, v stays with its own
opinion. Otherwise, there is a clear majority and the node adopts the majority
opinion. This leads to the following definition.

Definition 9. Let G = (V,E) be a graph and let f0 be an initial opinion
assignment such that f0 : V → {0, 1}. The deterministic binary majority
process is the series of opinion assignments that satisfy the rule

ft+1(v) =


0 if |{u ∈ N(v) : ft(u) = 0}| > |{u ∈ N(v) : ft(u) = 1}|
1 if |{u ∈ N(v) : ft(u) = 0}| < |{u ∈ N(v) : ft(u) = 1}|
ft(v) otherwise.

Note that the pair (G, f0) completely determines the behavior of the system
according to the majority process. We now define the main object of this work,
the voting time.

Definition 10. Given a graph G = (V,E) and any initial opinion assignment
f0 on V , the convergence time T of the majority process on G w.r.t. f0 is
T = T(G, f0) = min{t : ∀v ft+2(v) = ft(v)}. The voting time of G is defined
as max

f0∈{0,1}V
T(G, f0).

Observe that T is indeed the number of steps until the process converges to
a two-periodic state. This holds since the process is completely determined
by the current opinion assignment. Thus ft+2(v) = ft(v) also implies that
ft+3(v) = ft+1(v) for all nodes v.
In the following we assume without loss of generality that G is connected.

For disconnected graphs the deterministic binary majority process runs inde-
pendently in each connected component. Therefore, the resulting upper bounds
on the voting time can be replaced by the maximum over the corresponding
bounds in the individual connected components of G.

12.2 Our Contribution

First we define the voting time decision problem vtdp and show in Chapter 13
that it is NP-complete.

Definition 11 (voting time decision problem vtdp). For a given graph G and
an integer k, is there an assignment of initial opinions such that the voting
time of G is at least k?

Theorem 38. Given a general simple graph G, vtdp is NP-complete.

108

12.2 Our Contribution

In Chapter 14 we extend known approaches to derive upper bounds on the
voting time for general graphs, which are tight up to a constant of 1. In
Section 14.2, we identify the following subsets of nodes that play a crucial role
in determining the voting time of the deterministic binary majority process.

Definition 12. A set of nodes S is called a family if and only if for all pairs
of nodes u, v ∈ S we have N(u) \ {v} = N(v) \ {u}. We say that a family S is
proper if |S| > 1.

The set of families of a graph forms a partition of the nodes into equivalence
classes. Our main contribution is a proof that the voting time of the deter-
ministic binary majority process is bounded by that of a new graph obtained
by contracting its families into one or two nodes, as stated in the following
theorem.

Definition 13. Given a graph G = (V,E), its asymmetric graph G∆ =
(V ∆, E∆) is the subgraph of G induced by the subset V ∆ ⊆ V constructed by
contracting every family of odd-degree non-adjacent nodes to one node, and
any other proper family to two nodes.

Let in the following Veven be the set of even-degree vertices in V and,
analogously, let Vodd be the set of odd-degree vertices. Based on above definition
of G∆, we give the following bound on the voting time.

Theorem 39. Given any initial opinion assignment on a graph G = (V,E),
the voting time of the deterministic binary majority process is at most

1 + min
{
|E∆| − |V

∆
odd|
2 ,

|E∆|
2 + |V

∆
even|
4 + 7

4 · |V
∆|
}
.

Furthermore, this bound can be computed in O(|E|) time.

As mentioned before, this bound becomes O
(
r2) for the Turán graph T (n, r)

and O(|V |/d) for d-ary trees.
Finally, in Chapter 15 we give some insight into further interesting computa-

tional properties of the deterministic binary majority process. For example, we
disprove a monotonicity of the convergence time w.r.t. the potential function
and argue that the voting time is not, at least straightforwardly, bounded by
the diameter of the graph.

109

13
NP-Completeness

If it was possible to efficiently compute the voting time, there would have been
not much interest in investigating good upper bounds for it. In this section,
we show that this is unlikely to be the case. We prove Theorem 38 by reducing
3sat to the voting time decision problem. Given Φ ∈ 3sat, we construct
a graph G = G(Φ) such that the deterministic binary majority process on
G simulates the evaluation of Φ. The graph G consists of h layers where
h = 3 + 4 · n. The first layer represents an assignment of the variables in Φ,
the remaining layers represent Φ and ensure that the assignment of variables
in Φ is valid. We will show that if Φ is satisfiable, then there exists an initial
assignment of opinions for which the convergence time is exactly h + 1. If,
however, Φ is not satisfiable, then any assignment of opinions will result in a
convergence time strictly less than h+ 1.
We now give the formal proof.

13.1 Reduction

Let Φ ∈ 3sat be a Boolean formula in 3-conjunctive normal form. Let n be the
number of variables of Φ. Let m be the number of clauses of Φ. The Boolean
formula is of the form Φ = (l1,1 ∨ l1,2 ∨ l1,3) ∧ · · · ∧ (lm,1 ∨ lm,2 ∨ lm,3), where
li,j ∈ {x1, x1, x2, x2, · · · , xn, xn} is a literal for 1 ≤ i ≤ m and 1 ≤ j ≤ 3.
We construct a graph G to simulate the evaluation of Φ as follows. Let

` = 10 · (m+ n) + 1. The graph consists of several layers. On the first layer,
we place so-called literal cliques of size `, and on the layers above we place
the gates. In our reduction, we use or-gates, an and-gate, and 2/3-gates.
Each gate consists of one or several nodes. Additionally, we have two so-called
mega-cliques Kwhite and Kblack of size `.

Let g be an arbitrary but fixed gate. We denote a node on a layer below g
which does not belong to g but is connected to g as input node to g. Additionally,

111

13 NP-Completeness

we will denote a node that belongs to g and is connected to another gate on a
layer above g as output node of g.
In the following, we assume that opinion 1, white, corresponds to Boolean

true and 0, black, corresponds to false. The main idea of the construction is
to show that an activation signal is transmitted from the bottom up through all
layers. If the current assignment of opinions on the literal cliques corresponds
to a satisfying assignment of Boolean values to Φ, then the process requires
h+ 1 steps. The main purpose of the or-gates and the and-gate is to evaluate
Φ. The 2/3-gates check whether the opinion assignment to literal nodes is valid.
That is, we need to enforce that the corresponding literal nodes for xi and xi are
of opposite colors for every variable xi of Φ. If either this condition is violated
and variables xi exist for which xi = xi or the current assignment of opinions
on the literal cliques does not corresponds to a satisfying assignment of Boolean
values to Φ, the construction enforces that the process stops prematurely after
strictly fewer than h+ 1 steps.

Layer 1: Literal Cliques.

We represent each variable xi with two cliques, one for xi and one for xi. Each
clique has a size of ` which is defined above. Note that ` is odd. Additionally,
we distinguish three so-called representative nodes in each of these cliques.
Furthermore, we add two cliques of size ` to the graph which we call mega-
cliques. Intuitively, these mega-cliques represent the Boolean values true and
false. We will show that they cannot have the same color in order to achieve
a long convergence time. The mega-cliques are used in all other gates.

(x1 ∨ x2 ∨ x3)

K`

x1 x′
1

K`

x2 x′
2

K`

x1 x′
1

K`

x1 x′
1

K`

x2 x′
2

K`

x1 x′
1

Kwhite

or

la
ye
r
2

la
ye
r
1

Figure 13.1: literal nodes representing variables and or-gate encoding the formula

Layer 2: Parallel or-Gates.

The or-gates are placed on layer 2 and consist of one node v which is also the
output node. There is one or-gate for every clause. Fix a clause (lj,1∨ lj,2∨ lj,3).
Input nodes are three pairs of nodes (v1, v′1), (v2, v

′
2), and (v3, v

′
3), where

(v1, v′1) are two representative nodes of the literal clique for lj,1, (v2, v
′
2) are

112

13.1 Reduction

representatives of lj,2, and (v3, v
′
3) are representatives of lj,3. That is, for

each literal in the clause we connect the or-gate on layer 2 to two of the
three representative nodes of the corresponding literal clique on layer 1. The
output node v is additionally connected to 4 nodes of the Kwhite mega-clique.
Intuitively, we use the or-gates to verify that for each clause at least one literal
is true. All clauses are evaluated simultaneously using an or-gate for each
clause. The or-gate is shown in Figure 13.1.

Layer 3: and-Gate.

There is exactly one and-gate on layer 3. This and-gate consists of one output
node denoted u0, which has the following input nodes. It is connected to every
output node of the or-gates on layer 2 and to m − 2 distinct nodes of the
Kblack mega-clique. Intuitively, the and-gate is used to verify that every clause
is satisfied. It is shown in Figure 13.2.

la
ye
r
2

la
ye
r
3

la
ye
r
1

Kblack

m
and

m− 2

or or or or or

Figure 13.2: and-gate to verify that each clause is satisfied

Layers 4 to 3 + 4n: 2/3-Gates.

The 2/3-gates consist of a path v1, v2, v3, and v4. Each node of this path is
connected to two distinct nodes of the Kwhite. The output node of the gate is
v4. The node v1 of the first 2/3-gate on layer 4 is connected to the and-gate
on layer 3. The node v1 of each of the following 2/3-gates is connected to
the node v4 of the previous 2/3-gate. Additionally, the input node of the i-th
2/3-gate is connected to three distinct nodes of the literal clique representing
xi and to three distinct nodes of the literal clique representing xi on layer 1.
The output node of the final 2/3-gate is connected to Kblack. An example is
shown in Figure 13.3. The 2/3-gates are used to verify that we do not have
variables xi in Φ for which the literal cliques of xi and xi have the same color.
Observe that 2/3-gates span over 4 layers, and we have n such 2/3-gates.

Literal cliques, or-gates, and the and-gate use only one layer, and 2/3-gates
span over 4 layers. Therefore, the total number of layers is h = 3 + 4 · n, which
results from one layer for the literal cliques, one layer for the or-gates, one
layer for the and-gate, and 4 · n layers containing n concatenated 2/3-gates.

113

13 NP-Completeness

v4
v3
v2
v1

2/3

Kwhite Kxi
Kxi

la
ye
r
1

la
ye
rs

4
to

3
+
4
·n

Figure 13.3: 2/3-gate to verify that the literal cliques have valid colors assigned

A detailed example for such a graph G is given at the end of this chapter in
Figure 13.5. Based on above description of G we prove the following lemmas,
which are then used to show Theorem 38.

Lemma 40. If Φ is satisfiable, then there exists an assignment of opinions
such that the convergence time in G is at least h+ 1.

To show Lemma 40, we construct an initial opinion assignment for which
the gates change from black to white one layer after the other, assuming Φ is
satisfiable. The full proof is as follows.

Proof. Let A = (a1, . . . , an) be an assignment of Boolean values to the n
variables in Φ which satisfies Φ. We need to show that there exists an opinion
assignment on G for which the deterministic binary majority process requires
at least h+ 1 steps to converge. In the following, we construct such an opinion
assignment.

Let fA be an initial opinion assignment in the graph G that represents A by
initializing the nodes in the literal cliques on layer 1 according to the assignment
A as follows. For each literal xi or xi, ai assigns either true or false to the
literal. We denote a literal xi or xi which is assigned true as positive and
literals which are assigned false as negative. For the positive literal cliques, we
assign the color black to bL/2c nodes including the representative nodes of the
clique. The remaining dL/2e nodes, which do not have any other connections
except within the literal clique, are colored white. Negative literal cliques are
colored entirely black. Furthermore, we initialize all nodes of the Kwhite and
the Kblack with white and black, respectively. All other nodes, the paths v1 to
v4 in the 2/3-gates, the output nodes of the or-gates, and the output node of
the and-gate, are colored black.

The process now behaves as follows.
1. In the first step, all black nodes in every positive literal clique except the

representative nodes turn white, since they have dL/2e white neighbors
and only bL/2c − 1 black neighbors.

114

13.1 Reduction

K`

b`/2c

d`/2e

(a) t = 0

K`

(b) t = 1

K`

(c) t = 2

Figure 13.4: The figure shows the behavior of the cliques on layer 1. The three top nodes
are the representatives.

2. The representative nodes of the literal cliques will turn white in the
following step. This behavior of the cliques on layer 1 is shown in
Figure 13.4.

3. Additionally to the neighbors in Kwhite, all or-gates on layer 2 will have
at least two white input nodes from representing at least one positive
literal clique, since A satisfies Φ. Therefore, the or-gates will turn white
in step 3.

4. Once all or-gates become white, the and-gate has a total of m white
input nodes that form a clear majority against the m− 2 edges to black
nodes in Kblack and the 1 edge to the black node of the first 2/3-gate.
Therefore, the and-gate turns white in step 4.

5. In the following 4 · n steps, node after node and gate after gate the
2/3-gates turn white. Once all nodes of the 2/3 gates have turned white,
the process stops.

Summing up over all of the above steps, the convergence time of the process
w.r.t. the initial opinion assignment fA is exactly T(G(Φ), fA) = 4+4·n = h+1.
Therefore, the voting time in G(Φ) for a satisfiable Φ is at least h+ 1, which
yields the lemma.

It remains to show that if Φ is not satisfiable, then the voting time in G is
strictly less than h + 1. Recall that the voting time is the maximum of the
convergence time over all possible initial opinion assignments.

Lemma 41. If Φ is not satisfiable, then there is no assignment of opinions
such that the convergence time in G is at least h+ 1.

Before we prove this lemma, we establish several auxiliary lemmas which
require the following definitions. Let u0 denote the output node of the and-gate.
Consider the graph G′ induced by the node of the and-gate and the nodes of
the 2/3-gates. Let ui be the node at distance i to u0 in G′. We observe that
G′ is a path u0, . . . , uκ consisting of the 4 · n + 1 top layers of the graph G.
Consequently, κ = 4 · n and ui is the i-th node on this path.

115

13 NP-Completeness

Definition 14 (Stable Time). We define the stable time s(v) for any node
v ∈ V to be the first time step such that v does not change its opinion in any
subsequent time step t′ > s(v) over all possible initial configurations. That is,

s(v) = min
{
t : ∀f0 ∈ {0, 1}V ∀t′ ≥ t ft′(v) = ft(v)

}
.

Accordingly, let for any subset V ′ ⊆ V be s(V ′) defined as s(V ′) =
max{s(v) : v ∈ V ′}.

In the following, let VK be the set of nodes of all cliques in G(Φ), that is,
the nodes contained in the literal cliques and in the mega-cliques on layer
1. Furthermore, let VKr be the set of representatives of the cliques and
VK− = VK \ VKr . That is, every clique K on layer 1 consists of K− ∪ Kr.
Finally, let Vor be the set of all output nodes of or-gates. The following lemma
shows that the layers become stable one after the other.

Lemma 42. It takes at most 3 time steps for the layers 1 and 2 consisting of
literal cliques and or-gates to become stable. Precisely, we have
(i) s(VK−) = 1,
(ii) s(VKr) = 2, and
(iii) s(Vor) = 3.

Proof. The lower bounds for all three claims follow from the initial opinion
assignment fA described in the proof of Lemma 40. We now show the upper
bounds. In the following, let f0 be an arbitrary but fixed initial opinion
assignment.
(i) Let K be an arbitrary but fixed clique and let c ∈ {0, 1} be the majority

color among the nodes of K. Let furthermore K− be the set of clique
nodes that do not have connections to any other node except within
the clique, that is, K− contains all clique nodes except representatives.
Note that all nodes in K− only have connections to all other nodes in
K. Since K is odd and c is the majority color in K, each node v ∈ K−
with f0(v) = c will have at least b`/2c neighbors out of a total of `− 1
neighbors colored c. Therefore, each node v ∈ K− with f0(v) = c will
keep its color c such that f1(v) = c. However, all other nodes v′ ∈ K−
with f0(v′) 6= c will change their opinion to c, since they have at least
d`/2e neighbors out of a total of ` − 1 neighbors colored c, such that
f1(v′) = c.
By construction and by the size of the clique, `, all nodes v ∈ K− have
more neighbors in K− than in V \K−. Therefore, for all consecutive
steps t′ ≥ 1, we have for any v ∈ K− that ft′(v) = c. This holds for all
cliques on layer 1, and thus s(VK−) ≤ 1.

(ii) Let K be an arbitrary but fixed clique and let v ∈ Kr be a representative
node of K. By construction, v has a majority of its neighbors in K−

and hence from (i) we derive s(v) ≤ 2. Therefore, s(VKr) ≤ 2. We also

116

13.1 Reduction

observe that all nodes in Kr have the same color after the second step,
since the nodes in K− become monochromatic in the first step and these
nodes dominate the behavior of the nodes in Kr.

(iii) Let v be the output node of an arbitrary but fixed or-gate in Vor. We
observe that all neighbors of v except for one neighbor (the node of the
and-gate u0) are stable for any time step t′ ≥ 2. By (ii), at time 2 all
representatives of any literal xi have the same color and Kblack is stable.
Therefore, at time 2 an even number of neighbors of v are black and an
even number is white. Since the total number of neighbors of v is 10,
we observe that u0 cannot influence ft′(v) for t′ ≥ 2. Moreover, by (i)
and (ii) we have at time t′ ≥ 2 that the majority of neighbors having
color c does not change and therefore v becomes stable at time 3. Thus
s(Vor) ≤ 3 holds.

The above lemma gives bounds on the stable time of layers 1 and 2. In the
following, we argue that whenever a node changes its opinion in any step t
after time step 3, it will not change its color in any subsequent time step t′ ≥ t
any more. We therefore define the so-called activation time of a node v ∈ G′
as follows.

Definition 15 (Activation Time). Let c be the color of the Kblack mega-clique at
time 2 and let f0 be an arbitrary but fixed initial opinion assignment. We define
the activation time of a node v ∈ G′ to be the first time step after time step 3
in which the node v adopts opinion c. That is, a(v) = min{t ≥ 3 : ft(v) = c}.
If v does not change its color after time step 3 we write a(v) = 3.

We now use the above definition to state the following lemma, which describes
that every node ui ∈ G′ with i ≥ 1 changes its color at most once after time
step 3. Note that this covers the nodes of the 2/3-gates.

Lemma 43. Let f0 be an arbitrary but fixed initial opinion assignment. Let
t be the activation time w.r.t. f0 of the node ui ∈ G′ with i ≥ 1 such that
t = a(ui). Then for all t′ ≥ t we have ft′(ui) = ft(ui).

Proof. By Lemma 42, all nodes u ∈ VKr are stable at t′ ≥ 2. We now
distinguish two cases.
Case 1: i mod 4 6= 1. Observe that ui can only change its color at time t =
a(ui), if it had a different color than Kwhite in the previous round. This holds,
since every node ui with i mod 4 6= 1 has the same number of connections
to Kwhite than to nodes in V \Kwhite. Since furthermore the process behaves
lazy, any node ui which has the same color as Kwhite cannot change its opinion
back to the opposite color any more.
Case 2: i mod 4 = 1. The node ui is a v1 node of the j-th 2/3-gate with
j = di/4e. Therefore it is connected to three representatives of each literal
clique for xj and xj . The literal representatives of xj and xj are stable at time

117

13 NP-Completeness

t′ ≥ 2. Now if xj and xj have the same color c, then ui has 6 > |N(ui)|/2
edges to nodes of color c. Therefore, the node does not change its color any
more after time step 3. That is, we have a(ui) = 3 and also ft′(ui) = c for
any consecutive time step t′ ≥ 3. If, however, xj and xj do not have the same
color, these edge cancel each other out and the color of node ui is determined
by ui−1, ui+1, and Kwhite. Therefore, the same argument as in the first case
holds.

In the following we examine the behavior of layer 3 which contains only the
and-gate. Recall that u0 is the output node of the and-gate. The next lemma
describes the following fact. The and-gate u0 can only change its color in a
time step t ≥ 4 if u1 changed its color in time step t− 1. After this change at
time t, the node u0 cannot change its color again.

Lemma 44. Let f0 be an arbitrary but fixed initial opinion assignment and
let furthermore t be the round after node u1 has been activated such that
t = a(u1) + 1. For all consecutive rounds t′ ≥ t we have ft′(u0) = ft(u0). That
is, the and-gate does not change its opinion any more once the node u1 has
become stable.

Proof. Note that t is at least 4 by definition of the activation time. Let c be
the color of Kblack and c = 1 − c the opposite color of c. If at most m − 2
of the or-gates have color c, then the node of the and-gate has at least
2 + (m − 2) > |N(u0)|/2 neighbors which will be colored c for all t ≥ 3 and
therefore the and-gate will be colored c for every t′ ≥ 4.
If, however, m− 1 of the or-gates have color c, only one or-gate has not

been activated and has color c. Thus the node of the and-gate u0 has on
layer 1 and layer 2 a total of m − 1 neighbors of color c and also a total of
m− 1 neighbors of color c. That is, these neighbors cancel each other out. By
Lemma 42 the cliques and gates on layers 1 and 2 do not change their color for
any t′ ≥ 4. Therefore, the node u0 can only be influenced by u1 and the color
of u0 at time t is the color of u1 at time t− 1 for any t ≥ 4. By Lemma 43 we
know that u1 may change its opinion only once in a round t = a(u1) ≥ 3 and
therefore for any round t′ ≥ t+ 1 we have ft′(u0) = ft(u0).
Finally, if m of the or-gates are colored c, then u0 has m > |N(u0)|/2

neighbors of color c and since by Lemma 42 these m neighbors do not change
their color for t ≥ 4 we have ft(u0) = c for all t ≥ 4. Thus, in all cases the
claim follows.

The following lemma implies that in order to reach a convergence time of
h+ 1 the gates on the path u0, . . . , uκ in G′ have to activate one after the other
starting with u0 at time 4. Recall that κ = 4 · n.

Lemma 45. Let f0 be an arbitrary but fixed initial opinion assignment and
let ui ∈ G′ be a node with 0 ≤ i ≤ κ. If a(ui) < i + 4 w.r.t. f0, then
T(G(Φ), f0) < h+ 1.

118

13.1 Reduction

Proof. By Lemma 42 all nodes of VK and Vor are stable after time step 2 and
3, respectively. From Lemma 43 we observe that every node of u1, . . . , uk with
k = 4 · n can only change its color once after time step 3. Note that from
Lemma 44 we conclude that if u1 changes its color at time t then the and-gate
does not change its color for any t′ ≥ t+ 1.
We now consider the inner nodes of the path uj for which 1 ≤ j < k. In

order for a node uj to change its color at time t > 3, one of the neighboring
nodes uj−1 or uj+1 must have changed its color at time t − 1. This follows,
since according to Lemma 42 all other neighbors of the node uj are already
stable after 2 steps. Now if a node uj changes its opinion, one of the neighbors
of uj must have changed its opinion in the previous round. This can only be
either uj−1 or uj+1 (or both), since all other neighbors of uj are already stable.
Since all nodes u1, . . . , uk of the path in G′ can only change their color

once and since u0 becomes stable one time step after u1 changes its color, the
convergence time of the graph G(Φ) is dominated by the behavior of the path.
That is, in order to achieve a long convergence time, the path must change
its color one node after the other, resulting in a convergence time in Ω(n).
Observe that this can only happen if the entire path has a different color than
the Kwhite after the second step. As soon as one of the path nodes is assigned
the same opinion as the Kwhite mega-clique, the entire path will be activated
too early and the process stops prematurely.

Now in order to have a convergence time of h+ 1, the path in G′, u0, . . . , uk,
must activate from u0 over u1 up to uk or in the reverse direction from uk over
uk−1 down to u0. We now argue that activating from uk down to u0 cannot
yield a convergence time of at least h+ 1.

Note that all neighbors of uk except for uk−1 are stable at any time step
t ≥ 3. Therefore, uk either has the same fixed opinion as the Kwhite and thus
a(uk) = 3, or uk has an activation time a(uk) = a(uk−1) + 1. Now in the first
case, a(uk) = 3, the convergence time is bounded by 3 + k = 3 + 4n < h+ 1,
since the path becomes stable one node after the other starting with the node
uk. That is, the resulting convergence time is strictly less than h+ 1. In the
second case, a(uk) ≥ 4, we note that a(uk) = a(uk−1) + 1 and thus the path
cannot activate from uk down to u0.
We conclude that in order to have a convergence time of h + 1 the nodes

must activate from u0 to uk starting with node u0 in time step 4 such that
a(u0) = 4. Therefore, a(ui) must be i+ 4 to have a convergence time of h+ 1
which shows the lemma.

In the following two lemmas, we enforce that initial opinion assignments
which do not represent valid assignments of Boolean values to literal cliques
result in premature termination of the deterministic binary majority process
in G(Φ). An assignment is called illegal if there exist literal cliques such that
the majority of xi and the majority of xi have the same initial color.

119

13 NP-Completeness

Lemma 46. For any illegal initial opinion assignment fI to G(Φ), the con-
vergence time T(G(Φ), fI) is strictly less than h+ 1.

Proof. In the following we use Kr(xi) and Kr(xi) to denote the representative
nodes of the literal cliques for xi and xi. Note that by Lemma 42 these
representative nodes are stable at time 2. Now assume both cliques have color
c after the second step.

Let u be the first node v1 of the i-th 2/3-gate. By the construction of G(Φ),
u is connected to 6 representative nodes of literal cliques which all share the
same color c. Since the representative nodes are stable after 2 steps, u will
also have color c for every time step t′ ≥ 3. That is, a(u) = 3 and thus by
Lemma 45 the convergence time is less than h+ 1.

Lemma 47. If after two time steps Kwhite and Kblack have the same color, the
process stops after strictly less than h+ 1 steps.

Proof. Let c be the color of both mega-cliques after two time steps. Note that
from Lemma 42 we conclude that both cliques are stable at time 2. Therefore
uk activates at most at time 3, that is, a(uk) = 3. By induction, one can show
that ui will activate at most at time 3 + k − i. Hence u1 becomes activated
at most at time t = 3 + k − 1 < h and u0 at most at time t = 3 + k which is
strictly less than h+ 1. Since by Lemma 42 all other nodes are also stable at
time 3 + k < h+ 1 the claim follows.

We now combine above lemmas and prove Lemma 41.

Proof of Lemma 41. In the following we assume that Kwhite and Kblack have
opposite colors after the second step, since otherwise the convergence time
is less than h+ 1 as shown in Lemma 47. W.l.o.g., assume Kwhite is colored
white and Kblack is colored black. Furthermore, we assume that the assignment
is legal, since otherwise the convergence time is less than h + 1 as shown in
Lemma 46. Finally, we also assume that u1, . . . , uk are initially black, since
otherwise the convergence time is less than h+ 1 as shown in Lemma 45. Note
that this especially covers the node u1 which we assume to be black at time
4, since otherwise again the convergence time is less than h+ 1 according to
Lemma 45.

According to the assumption of Lemma 41, Φ is not satisfiable. That is, for
every possible assignment of Boolean values to the variables in Φ, there exists
a clause (l1 ∨ l2 ∨ l3) where all literals l1, l2, and l3 are false. Therefore, for
any legal initial opinion assignment f0 in G(Φ), the representative nodes of
the corresponding literal cliques will be black at time 2. Consequently, the
or-gate corresponding to that clause will be stable with color black at time 3.
This implies that the and-gate is black as long as u4 is black since at least

(m− 2) + 1 + 1 > |N(u0)|/2 neighbors are black. Since the and-gate is black,
we can only have a(u1) = 5 if a(u2) = 4. According to Lemma 45, this results

120

13.1 Reduction

in a convergence time strictly less than h+ 1. Note that if f3(u1) = 1, then
u2 will be activated at time 4 and again by Lemma 45 this yields that the
convergence time is less than h+ 1.

Finally, we combine Lemma 40 and Lemma 41 to show Theorem 38 as follows.
For a full example of a reduction, see Figure 13.5 on page 122.

Proof of Theorem 38. It is easy to see that vtdp is in NP. Furthermore, we
can polynomially reduce 3sat to vtdp. The correctness proof of the reduction
follows from Lemma 40 and Lemma 41. Therefore we conclude that vtdp is
NP-complete.

121

13 NP-Completeness

(
x
1
∨

x
2
∨

x
3
)

(
x
2
∨

x
4
∨

x
5
)

(
x
3
∨

x
5
∨

x
6
)

(
x
5
∨

x
7
∨

x
8
)

(
x
1
∨

x
2
∨

x
3
)

(
x
5
∨

x
7
∨

x
8
)

K
`

∧
∧

∧
∧

∧

K
`

K
`

K
`

K
`

K
`

K
`

K
`

K
`

K
`

K
`

K
`

K
`

K
`

K
`

K
`

x
1

x
′1

x
2

x
′2

x
3

x
′3

x
1

x
′1

x
2

x
′2

x
3

x
′3

x
4

x
′4

x
4

x
′4

x
5

x
′5

x
5

x
′5

x
6

x
′6

x
6

x
′6

x
7

x
′7

x
7

x
′7

x
8

x
′8

x
8

x
′8

layer 3

o
r

o
r

o
r

o
r

o
r

o
r

v
4

v
3

v
2

v
1

2/
3

x
1

x
′1

x
′′1

x
1

x
′1

x
′′1

a
n
d v

4

v
3

v
2

v
1

2/
3

x
2

x
′2

x
′′2

x
2

x
′2

x
′′2

v
4

v
3

v
2

v
1

2/
3

x
3

x
′3

x
′′3

x
3

x
′3

x
′′3

v
4

v
3

v
2

v
1

2/
3

x
4

x
′4

x
′′4

x
4

x
′4

x
′′4

v
4

v
3

v
2

v
1

2/
3

x
5

x
′5

x
′′5

x
5

x
′5

x
′′5

v
4

v
3

v
2

v
1

2/
3

x
6

x
′6

x
′′6

x
6

x
′6

x
′′6

v
4

v
3

v
2

v
1

2/
3

x
7

x
′7

x
′′7

x
7

x
′7

x
′′7

v
4

v
3

v
2

v
1

2/
3

x
8

x
′8

x
′′8

x
8

x
′8

x
′′8

4− 7 8− 11

12− 15 16− 19

20− 23 24− 27

32− 3528− 31

K
w
h
ite

K
b
la
ck

layer 2layer 1 layers

F
igure

13.5:
a
fullexam

ple
for

a
reduction

122

14
Bounds on the Voting Time

Since the voting time decision problem vtdp is NP hard, we cannot hope to
calculate the voting time of a graph efficiently. Nevertheless, in this chapter
we show that it is possible to obtain non-trivial upper bounds on the voting
time that are easy to compute. This section is dedicated to proving our upper
bound on the voting time, Theorem 39. The main contribution of this theorem
is the influence of symmetry which is studied in Section 14.2.

We start by giving a formal version of the potential function argument [GO80,
PS83] as conceived in [Win08b]. In the following we assume that each edge in
{x, y} ∈ E can be replaced by two directed edges (x, y) and (y, x). The main
idea is based on so-called bad arrows defined as follows.

Definition 16. Let G = (V,E) be a graph with initial opinion assignment f0.
Let v denote an arbitrary but fixed node and u ∈ N(v) a neighbor of v. Let
t denote an arbitrary but fixed round. The directed edge (v, u) is called bad
arrow if and only if the opinion of u in round t+ 1 differs from the opinion
of v in round t. We will also denote the bad arrows which have their tail at
round t = 0 as initial bad arrows.

Intuitively, each of these directed edges (v, u) can
be seen as advice given from v to u in the voting
process. In the case of a bad arrow the advice was
not followed by u since it has a different opinion
in the following round than v. Observe that each
bad arrow is incident at exactly two nodes and thus
we say it is outgoing in the node at its tail and
incoming in the node at its head. An example of
such a bad arrow can be seen in Figure 14.1.

v u

t

t+ 1

Figure 14.1: bad arrow
from node v to node u in
round t

Theorem 48. Let G = (V,E) be a graph which contains only vertices of odd
degree. The voting time of the deterministic binary majority process on G is
at most 1 +Wbad where Wbad is an upper bound on the number of initial bad

123

14 Bounds on the Voting Time

v

t− 1

t

u1 u2 u3 u4 u5

t+ 1

. . .

(a) Case 1: ft+1(v) = ft−1(v)

v

t− 1

t

u1 u2 u3 u4 u5

t+ 1

. . .

(b) Case 2: ft+1(v) 6= ft−1(v)

Figure 14.2: Above figures show examples for the two cases. In the first case, the number
of outgoing bad arrows from v in round t− 1 equals the number of incoming bad arrows at v
in round t+ 1. In the second case the node v has color black in round t+ 1 due to a majority
for black in round t. Therefore the number of incoming bad arrows at v in round t + 1 is
strictly smaller than the number of outgoing bad arrows from node v in round t− 1.

arrows for any initial opinion assignment on G. In particular, the voting time
of G is at most 2 · |E|+ 1.

Proof. The idea of the proof is to define a potential function φt that is strictly
monotonically decreasing over the time. Let f0 be any initial opinion assignment.
The potential function φt is simply the number of bad arrows defined in
Definition 16, that is,

φt = φt(G, ft) = |{(v, u) ∈ E : ft+1(u) 6= ft(v)}| .

Let v denote an arbitrary but fixed node. To show that φt indeed is a
strictly monotonically decreasing potential function as long as t ≤ T(G, f0) we
distinguish the following two cases.

Case 1. The node v has the same opinion in round t+ 1 as in round t− 1,
that is, ft+1(v) = ft−1(v).
For each neighbor u of v that has a different opinion in round t than v in

round t− 1, there is a bad arrow from v to u. We denote the number of these
outgoing bad arrows leaving round t− 1 as mt−1(v), that is,

mt−1(v) := |{u ∈ N(v) | ft(u) 6= ft−1(v)}| .

There is an incoming bad arrow at node v in round t+ 1 from each neighbor
that has a different opinion in round t. Let nt+1(v) be this number, that is,

nt+1(v) := |{u ∈ N(v) | ft(u) 6= ft+1(v)}| .

Now recall that v has the same opinion in round t+ 1 as in round t− 1. Thus,
the number of incoming bad arrows at node v in round t+ 1 is the same as
the number of bad arrows leaving node v in round t− 1, which gives us

nt+1(v) = mt−1(v) . (14.1)

An example for this case is shown in Figure 14.2a.

124

Case 2. The node v has a different opinion in round t + 1 than in round
t− 1, that is, ft+1(v) 6= ft−1(v).
Let mt−1(v) and nt+1(v) be defined as above. Since v changed its opinion

after round t − 1, either in step t or in step t + 1, there is an incoming bad
arrow at node v in round t+ 1 for every neighbor of v that did not have an
incoming bad arrow in round t. Now the key is that node v can only have
its current opinion in round t + 1 if there is a clear majority in round t in
favor of this opinion among all of its neighbors. Observe that this is where the
odd degrees mentioned in the problem statement [Win08a] indeed play a role.
Since every node has odd degree, there is always a clear majority among its
neighbors and no tie between opinions can ever occur. Now if there is a clear
majority in round t, the number of incoming bad arrows at node v in round
t+ 1 will be strictly smaller than the number of outgoing bad arrows at node
v in round t− 1, that is,

nt+1(v) < mt−1(v) . (14.2)

An example for this case is shown in Figure 14.2b.

Both cases. We take the sum over all outgoing bad arrows leaving the nodes
in round t−1 and obtainMt−1 =

∑
v∈V mt−1(v). Analogously, we take the sum

over all incoming bad arrows in round t+1 which gives us Nt+1 =
∑
v∈V nt+1(v).

However, since each bad arrow is incident in exactly two nodes, we conclude
that the sum over all incoming bad arrows in round t+ 1 is the same as the
sum over all outgoing bad arrows in round t. This gives us

Mt = Nt+1 = φt . (14.3)

If the deterministic binary majority process has reached a two-periodic state
in round t, from (14.1) and (14.3) we get

φt = Nt+1 = Mt =
∑
v∈V

mt(v) =
∑
v∈V

nt+2(v) = Nt+2 = φt+1 .

Now assume that the deterministic binary majority process has not yet
reached a two-periodic state in round t. That is, at least one node has a
different opinion in round t+ 1 than it had in round t− 1. Then from (14.2)
and (14.3) we get

φt = Nt+1 = Mt =
∑
v∈V

mt(v) >
∑
v∈V

nt+2(v) = Nt+2 = φt+1

which proves that the voting time of the deterministic binary majority process
on G is bounded from above by the initial number of bad arrows.

In particular, since there can be a bad arrow only between ordered pairs of
adjacent nodes, the initial number of bad arrows is bounded by 2 · |E|. Together
with the observation that above argument can only be applied after the first
step this implies that

T ≤ 2 · |E|+ 1 .

125

14 Bounds on the Voting Time

Note that in Theorem 48 it is assumed that all nodes of the graph have
odd-degree. In the following we show how to remove this assumption.

Definition 17. Let G = (V,E) be a graph. The graph G∗ = (V,E∗) is the
graph obtained by adding a self loop to every node of even degree in G. More
formally,

E∗ = E ∪
⋃

v∈Veven

(v, v) .

From the definition it follows that |E∗| = |E|+ |Veven|.

Theorem 49. The voting time of the deterministic binary majority process
on any graph G = (V,E) is at most 1 +Wbad, where Wbad is an upper bound
on the number of initial bad arrows in G∗.

Proof. For every node v ∈ V the sequence of opinions, (ft(v)), is exactly the
same for the deterministic binary majority process in G as for the deterministic
binary majority process in G∗. Indeed, every odd-degree node has the same
neighborhood in both, G and G∗, thus the process is the same for these nodes.
Now consider an arbitrary even-degree node v and fix a round t. If in G there
is a tie in round t, v behaves lazily in G and keeps its own opinion at round t.
In G∗, the node v considers its own opinion and thus also stays with its own
opinion. If on the other hand there is a clear majority in G, this majority has
a winning margin of at least 2, since v has even degree. Thus, the impact of
the self loop can be neglected and again v behaves the same in G∗ as in G.
We can thus bound the voting time of G by applying Theorem 48 to the

odd-degree graph G∗.

Observe that while the number of bad arrows is used in the potential function,
the convergence time is, however, not monotone w.r.t. the number of initial
bad arrows. This is argued in full detail in Chapter 15.
The upper bound on the voting time considered in [KPW14] follows from

the 2 · |E| upper bound on the number of bad arrows of Theorem 48. Clearly,
this result can be improved by a factor of 2 by simply applying the observation
that the number of initial bad arrows in G∗ is at most |E| − |Vodd|/2 as shown
in the proof of the following lemma.

Lemma 50. Let G = (V,E) be a graph. The number of initial bad arrows in
G∗ is at most |E| − |Vodd|/2.

Proof. From the definition of the deterministic binary majority process we
conclude that only less than half of a node’s neighbors could have had a different
opinion at time t = 0, since otherwise the node would have changed its own
opinion. Formally, for any v ∈ V it holds that

∑
u∈N(v)

[f1(v) 6= f0(u)] ≤ |N(v)|
2 .

126

14.1 Improved Bounds for Dense Graphs

Also, for odd-degree nodes the above inequality is strict. Therefore, the number
of incoming bad arrows at a node at time t = 1 is smaller than half of its
degree (strictly, for odd nodes). Thus, summing up all initial bad arrows we
get (2 · |E| − |Vodd|)/2, which concludes the proof.

Therefore we obtain the following corollary.

Corollary 51. The voting time of the deterministic binary majority process
on any graph G = (V,E) is at most 1 + |E| − |Vodd|/2.

Remark. Corollary 51 is tight for general graphs up to an additive constant
of 1. Indeed, consider a path graph with an initial opinion assignment on which
the opinions alternate except for the last two nodes, which share the same
opinion. See Figure 14.3 for this example. For this initial opinion assignment,
the process converges in |E| − |Vodd|/2 steps.

t = 0

t = 1

t = 2

v1 v2 vn

t = T− 1

t = T− 2

t = T

Figure 14.3: The figure shows an example for the tightness of the bound given in Corollary 51.
The network is a path graph consisting of |V | = n nodes and |E| = n− 1 edges. Given that
|Vodd| = 2, the bound given in Corollary 51 yields a voting time of at most n− 1. For the
given initial opinion assignment, the convergence time is n− 2.

14.1 Improved Bounds for Dense Graphs

We observe that Corollary 51 is (almost) tight, and it gives us a voting time
linear in the number of vertices for sparse graphs where |E| = O(|V |). However,
for dense graphs with, e.g., |E| = Ω

(
|V |2

)
there is room for improvement. Now

the main goal in this following section is to reduce the dominant term of the
voting time even further, which leads us to the following theorem.

Theorem 52. Let G = (V,E) be a graph. For any initial opinion assignment
f0 on G, the convergence time of the deterministic binary majority process is
at most 1 + |E|

2 + |Veven|
4 + 7

4 · |V |.

To show Theorem 52 we first introduce the following definitions and auxiliary
lemmas.

127

14 Bounds on the Voting Time

Definition 18. An opinion assignment f ′t is a q-swap of ft if for all nodes v

f ′t(v) = ft(v) ∨ f ′t(v) = q .

That is, all opinions assigned by f ′t are either the original opinion assigned by
ft or q.

Based on this definition we can state and prove the following key lemma.

Lemma 53 (Monotonicity). Let ft be an opinion assignment in round t and
f ′t a q-swap of ft. Let furthermore v be a node for which ft(v) 6= f ′t(v). It holds
for any time step k ≥ t that

fk(v) = q =⇒ f ′k(v) = q .

Furthermore, any subsequent opinion assignment f ′k is a q-swap of fk.

Proof. We show Lemma 53 by induction over k. The base case for k = t is
trivially true. Now suppose that Lemma 53 holds for k ≤ m. Let v be an
arbitrary but fixed node for which fm+1(v) = q. Since fm+1(v) = q we had a
majority for q among the neighbors of v in the previous opinion assignment fm
and according to the induction hypothesis f ′m is a q-swap of fm. Therefore, in
f ′m the number of nodes with opinion q could have only increased, strengthening
the majority for opinion q even further. Thus, f ′m+1(v) = q holds. Now assume
f ′m+1 was not a q-swap of fm+1. That is, there exists a node u for which
f ′m+1(u) 6= fm+1(u) and f ′m+1(u) 6= q. This is a contradiction to the previous
statement. Together, this concludes the induction.

In other words, Lemma 53 states that strengthening an opinion will never
make it weaker in a subsequent round, that is, if a node ends up with opinion
q, it also ends up with the same opinion in the q-swapped opinion assignment.

Definition 19. An opinion assignment ft is q-permanent if ft+2 is a q-swap
of ft.

We now use the definition above to further bound the voting time, since the
deterministic binary majority process has the property that once the process
is either in a 0-permanent or 1-permanent state it will converge in a number of
steps linear in |V | as shown in the following lemma. Observe that a two-periodic
state is both 0-permanent and 1-permanent.

Lemma 54. Given a q-permanent opinion assignment ft, the process converges
in at most 2 · |{v ∈ V : ft(v) 6= q}| rounds.

Proof. By definition, ft+2 is a q-swap of ft. Thus we can apply Lemma 53 and
conclude that either all nodes have at time t+ 2 the same opinion as at time t,
or some nodes have changed their opinion to q. That is, all nodes with opinion
q at time t will also have opinion q at time t+ 2. So there are two possibilities.

128

14.2 The Influence of Symmetry

Either every two time steps at least one node switches to opinion q or every
node has again its former opinion and we are in a two-periodic state. Thus the
process converges in at most 2 · |{v ∈ V : ft(v) 6= q}| < 2 · |V | steps.

We will now use this result to prove an upper bound on the voting time that
is better than Corollary 51 for dense graphs.

Proof of Theorem 52. Let ft be an opinion assignment that has not yet reached
a two-periodic state at time t. In the proof of Lemma 54 we made the
observation that there must exist a node v ∈ V for which ft(v) 6= ft−2(v). We
therefore distinguish the following two cases.

Case 1. The opinion assignment ft−2 is q-permanent.

Case 2. There exists another node u with ft−2(u) 6= ft−2(v) such that
ft(u) 6= ft−2(u), that is, u is non-two-periodic and disagrees with v at times t
and t− 2.
As long as we are in case 2, by repeating the argument in case 2 of the proof of
Theorem 48 we observe that the number of bad arrows drops by at least 2 in
each step (one due to v and another one due to u). According to Lemma 50, this
can be the case for at most 1 + (|E| − |Vodd|/2)/2 steps, since the deterministic
binary majority process will converge after that time. On the other hand, if at
some point we are in case 1, the process will converge in at most 2 · |V | steps
as shown in Lemma 54. Together, these two cases yield the bound

1 + |E| − |Vodd|/22 + 2 · |V | = 1 + |E|2 −
|Vodd|

4 + |V |4 + 7
4 · |V |

= 1 + |E|2 + |Veven|
4 + 7

4 · |V | .

Remark. One might intuitively assume that the voting time is bounded by the
diameter of the network. However, this is not true, at least straightforwardly,
as there exist graphs G where the convergence time w.r.t. a given initial opinion
assignments f0 is asymptotically larger than the diameter of the network, that
is, T(G, f0)� diam(G). Further details can be found in Chapter 15.

14.2 The Influence of Symmetry

We observe that the majority process is much faster on graphs that exhibit
certain types of symmetry, such as the star graph, the complete graph and
many other graphs in which several nodes share a common neighborhood. We
investigate this feature of the process to further improve the bounds obtained
so far. We recall that a set of nodes S is called a family if and only if for all
nodes u, v ∈ S we have N(u) \ {v} = N(v) \ {u}. The key fact is that these
nodes of any family will behave in a similar way after the first step.

129

14 Bounds on the Voting Time

Definition 20. Let fam(u) denote the family of u. We write u ∼ v if fam(u) =
fam(v).

Lemma 55. The relation ∼ defines an equivalence class. In particular, all
nodes in the same family either form a clique or a stable set, and they all have
the same degree in G.

Proof of Lemma 55. Recall that u ∼ v is defined as fam(u) = fam(v). There-
fore, reflexivity and symmetry of ∼ hold trivially. It remains to show that ∼ is
transitive, that is, ∀u, v, w ∈ V u ∼ v ∧ v ∼ w ⇒ u ∼ w. By definition, we
have

N(u) \ {v} = N(v) \ {u} and N(v) \ {w} = N(w) \ {v} .

Using the previous identities gives us

N(u) \ {w, v} = (N(u) \ {v}) \ {w} = (N(v) \ {u}) \ {w}
= (N(v) \ {w}) \ {u} = (N(w) \ {v}) \ {u} = N(w) \ {u, v}

and

v ∈ N(u) ⇐⇒ u ∈ N(v) ⇐⇒ u ∈ N(w)
⇐⇒ w ∈ N(u) ⇐⇒ w ∈ N(v) ⇐⇒ v ∈ N(w) . (14.4)

That is, v either belongs to bothN(u) andN(w) or to none of them, hence (14.4)
implies N(u) \ {w} = N(w) \ {u}. This shows transitivity of the relation ∼.

From the transitivity of ∼ it follows that all nodes in the same family either
form a clique or are pairwise non-adjacent and thus form a stable set. Together
with the definition

fam(u) = fam(v) ⇐⇒ N(u) \ {v} = N(v) \ {u}

it also follows that all nodes of the same family have the same node degree.

Corollary 56. For any graph G, its asymmetric graph G∆ is well-defined.

Proof. According to Lemma 55, the set of families is a partition of the nodes
of G. By construction of G∆, every family S in G is replaced by one or two
nodes in G∆. Therefore, there is a bijection between the families in G and the
corresponding node or pair of nodes in G∆. Hence G∆ is well-defined.

We are now ready to prove Theorem 39.

Proof of Theorem 39. Let v and v′ be two nodes of the same family fam(v) =
fam(v′), having the same color at time t. Since v and v′ observe the same
opinions in their respective neighborhood, v and v′ will also have the same
color anytime after t. It follows that if at some time t there is a bad arrow

130

14.2 The Influence of Symmetry

going from v to some neighbor u (or from u to v), then there will also be a bad
arrow from v′ to u (or from u to v′). In particular, this implies that whenever
the number of bad arrows adjacent to v is decreased by some amount c, also
the identical number of bad arrows adjacent to v′ will be decrease by the same
amount c.

Recall the proofs of Corollary 51 and Theorem 52. An estimate of the voting
time is obtained by upper bounding the number of bad arrows that can possibly
disappear during the process. The main argument is the following. It suffices
to only consider the bad-arrows adjacent to v in G∆, since the corresponding
bad arrows adjacent to v′ will disappear whenever those adjacent to v do.
Let v and v′ be two nodes with fam(v) = fam(v′) having a different color

at time t. We can divide every such family that contains nodes of different
opinions into two sets S0 and S1 according to their initial opinion in the first
round. Note that all nodes in either set behave identically. In particular, an
adjacent bad arrow from a node u to all nodes of either set disappears at the
same time. Since there is bijection between the families of G and the pairs of
nodes and singletons of G∆, and by applying Corollary 51 and Theorem 52 we
can bound the voting time by bounding the bad arrows in G∆. This yields the
first part of the claim. Using [CH94], one can obtain the modular decomposition
of G in O(|E|) time steps. In another O(|E|) time steps one can select from
the modular decomposition those modules that form a family, using that all
nodes of a family have the same degree. Hence, G∆ can be constructed in
linear time.

Remark. While we show for the voting time that we have maxf T(G∆, f) ≥
maxf T(G, f), in general it is not the case that T(G∆, f) ≥ T(G, f) for every
opinion assignment f . A formal statement along with a counterexample is
given in Chapter 15.

131

15
Further Computational Properties

In this chapter we provide examples and prove further computational properties
of the deterministic binary majority process w.r.t. the potential function of
[GO80, PS83], that is, the number of bad arrows defined in Definition 16. While
these properties are already mentioned in the previous chapter, we now give
the formal statements and proofs. We show that the convergence time is not
monotone w.r.t. the value of the potential function, and we investigate how
many opinion assignments exhibit the same bad arrows. Overall, our results
highlight the strengths and weaknesses of such a potential function approach
in bounding the voting time of the deterministic binary majority process.

Lemma 57. The convergence time is not monotone w.r.t. the initial number
of bad arrows.

Proof. Let G be a graph consisting of a star graph Si with i leaves that has a
path graph Pj of length j connected to its center node such that i > j. We
now can define two initial opinion assignments f (bad) and f (good) for which the
initial number of bad arrows in f (bad) is greater than the initial number of bad
arrows in f (good) but still T(G, f (bad)) < T(G, f (good)).

As f (bad) assignment, we color di/2e−1 leaves of the star graph Si white and
all other nodes, including the path Pj , black. As f (good) assignment, we color
all the nodes of Si black and assign alternating opinions to the nodes of the
path Pj . It is straightforward to verify that the described opinion assignments
prove the statement.

An example for a graph G consisting of a S17 and a P3 can be seen in
Figure 15.1. The example shows that even though the initial opinion assignment
in Figure 15.1a has much more initial bad arrows, the deterministic binary
majority process converges much faster for the opinion assignment shown in
Figure 15.1b.

133

15 Further Computational Properties

(a) initial opinion assignment f (bad) (b) initial opinion assignment f (good)

Figure 15.1: The figure shows an example for the graph described in the proof of Lemma 57.
It consists of a star graph S17 joined at the center node with a path of length 3. Clearly, the
initial opinion assignment f (bad) shown in Figure 15.1a has a total number of 8 bad arrows
while the initial opinion assignment f (good) shown in Figure 15.1a has only one true bad
arrow along with 3 self loop bad arrows. Still, the process will converge in only one step for
f (bad) while it will take 3 steps for f (good).

Suppose that, instead of specifying the initial opinion assignment, we decide
in advance what bad arrows are there. We can do that by deciding for each
ordered pair (u, v) for which {u, v} ∈ E whether we want to have a bad
arrow going from u to v. We formalize this notion by means of the following
definitions.

Definition 21. Let G = (V,E) be a graph and β : V × V → {0, 1} denote a
characteristic function on V × V . Then β is a bad arrows assignment on G
if there exists an opinion assignment f on G that determines β such that β
is the indicator function of the bad arrows we have on G w.r.t. the opinion
assignment f .

In proving upper bounds on the voting time we consider the bad arrows
assignment determined by the initial opinion assignment. One may wonder
whether in doing so we are losing information. In the following lemma we
show that, given a valid bad arrows assignment, we can reconstruct the initial
opinion assignment up to exchanging black and white (and up to two more
possibilities in bipartite graphs).

Lemma 58. Let G be a connected graph and let β be a valid bad arrows
assignment on G. If the graph is not bipartite, there are exactly two opinion as-
signments, otherwise there are exactly four opinion assignments that determine
β.

Proof. Let v ∈ V denote an arbitrary but fixed vertex. We now denote the
set {v} as N0 and the set of direct neighbors of v as N1 to define the i-th
neighborhood Ni for i ≥ 2 as

Ni =

 ⋃
u∈Ni−1

N(u)

 \
i−1⋃
j=1

Nj

 .

134

We show by an induction on k that the colors of
all nodes in N2k are determined by the color of v.
The base-case is trivial since for k = 0 we have
N0 = {v}. For the induction step we observe that
according to the induction hypothesis the color of
each node in N2k is determined. We now observe
that the color at time 1 of each node in N2k+1 is
determined by β and the colors at time 0 of the
nodes in N2k. Vice versa, also the colors at time
0 of nodes in N2(k+1) are determined by β and
the colors at time 1 of each node in N2k+1. This
concludes the induction.
An example is shown in Figure 15.2. In this figure
it is clear that v and, e.g., u1 must have a different
color, for the following reason. Since u1 does not
have a bad arrow to its neighbor in N1, it has the
same color in the next round as this neighbor. But
this neighbor’s color in the next round is different
to the current color of v because of the bad arrow
assignment.

v

N1

N2

u3

u2

u1

Figure 15.2: With a bad
arrows assignment given, the
opinions of each second neigh-
borhood are uniquely deter-
mined.

Observe that from above induction the lemma follows immediately for
bipartite graphs. We can fix the colors for two arbitrary nodes, one from each
of the two sets of non-adjacent nodes, to determine all other nodes’ colors. This
gives us four possible opinion assignments for a given bad arrow assignment
β. If the graph is not bipartite there must exist a cycle of odd length. The
opinion assignments for all nodes of this cycle are determined by β with the
same argument as in above induction. Therefore, not only the colors of even
neighborhoods N2k are determined, but also of odd neighborhoods N2k+1. This
leaves us with exactly two possible initial opinion assignments, which concludes
the proof.

Regarding the re-construction of opinion assignments from bad arrows, we
furthermore observe the following. According to the definition we clearly have
{u, v} /∈ E =⇒ β(u, v) = 0 for any bad arrows assignment β. However, there
do also exist characteristic functions on the (directed) set of edges of G that
do not form a valid bad arrows assignment. An example of such an invalid
assignment that motivates above definition is shown in Figure 15.3.
Figure 15.3 shows two different assignments of bad arrows for the K3, a

clique of size 3. The left assignment is valid, whereas the right assignment
cannot be valid. This is since in cliques of odd size all nodes share the same
opinion after exactly one step. Therefore all nodes at step t will have the same
opinion. Since, however, u1 had in step t − 1 a different opinion than this
majority opinion in step t, a bad arrow must exist between u1 and u3 (and
also a loop from u1 to itself, if we consider self-loops).
As already stated at the end of Section 14.1, one might intuitively assume

135

15 Further Computational Properties

u1

t− 1

t

u2 u3

(a) valid assignment

u1

t− 1

t

u2 u3

(b) invalid assignment

Figure 15.3: Not every characteristic function on the directed edges is a valid bad arrows
assignment. In above graph, the K3, all nodes share the same opinion after at most one time
step. Therefore, u1 and u3 have the same opinion at time t. Since u1 has a bad arrow to u2,
there must be also a bad arrow from u1 to u3.

that the voting time is bounded by the diameter of the network. However, the
following lemma shows that this, at least straightforwardly, is not true.

Lemma 59. For any given graph G with diameter ∆, there exists a graph G′
with the following properties.
• For any opinion assignment f for G, there exists an assignment f ′ for
G′ such that the convergence time of G is the same as in G′

• The diameter of G′ is constant
• G is a subgraph of G′.

Proof. We augment G by adding a clique C0 of size n where all nodes have
Opinion 0 to G. We then add node u0 initialized with 0 and connect it to all
nodes of G and C0. Symmetrically, we add a clique C1 of size n where all nodes
have Opinion 1 to G. We then add a node u1 initialized with 1 and connect
it to all nodes of G and C1. Note that every node u ∈ G is also in G′ and
the opinion of u is the same in both graphs for any point in time. Hence the
convergence time remains the same in G′ and the claim follows by observing
that G′ has a constant diameter.

Note that above lemma shows that for any connected graph G = (V,E) and
any initial opinion assignment f0 one can construct another graph G′ which
has G as an induced subgraph, asymptotically the same number of nodes and
edges, the same convergence time for a related initial opinion assignment, but
a constant diameter. However, there are even examples of graphs where the
convergence time of the deterministic binary majority process w.r.t. a given
initial opinion assignment f0 is asymptotically larger than the diameter of the
network without modifying the graph, that is, T(G, f0) = ω(diam(G)).

An example for such a graph is shown in Figure 15.4. In this example, we are
given a two-dimensional grid G of size |V | =

√
n×
√
n. Clearly, the diameter

of this graph is 2 ·
√
n. However, by laying a winding serpentine path of white

nodes in an entirely black grid as initial opinion assignment f0 we can force the
process to require a convergence time of T(G, f0) = Ω(n)� diam(G) = O(

√
n).

In Theorem 39 in Section 14.2, we show that for the voting time we have
maxf T(G∆, f) ≥ maxf T(G, f). However, in general it is not the case that

136

Figure 15.4: a two-dimensional grid G with diam(G) =
√
n and an initial opinion assignment

that converges only after Ω(n) steps

T(G∆, f) ≥ T(G, f) for every opinion assignment f , as we formally state and
show in the following lemma.

Lemma 60. Let G = (V,E) be a graph with initial opinion assignment f and
G∆ be the asymmetric graph constructed from G. In general, it does not hold
that T(G∆, f) ≥ T(G, f).

Proof. An example for such a graph for which T(G∆, f) ≤ T(G, f) is shown in
Figure 15.5.

(a) original graph G (b) graph G∆

Figure 15.5: The left graph G is a circle graph with additional gadgets connected to one
node. The dashed node is removed to obtain the graph G∆ shown on the right.

137

IVPart IVRapid Plurality Consensus

16
Introduction

In this final part, we again consider the problem of distributed voting in a
network of players modeled as a graph G = (V,E) with |V | = n. Each node
in the network starts with one initial opinion, which we will also call color,
from a set of possible opinions. We distinguish between the synchronous and
the asynchronous setting. In the synchronous model, all nodes simultaneously
communicate with their neighbors and update their opinions according to some
function of their neighborhood. In the asynchronous model, we assume that
each node has a random clock which ticks according to a Poisson distribution
once per time unit in expectation. Again, upon activation the nodes update
their opinion according to their neighborhood.

Regardless of the underlying model of synchronicity, if eventually all nodes
agree on one opinion, we say this opinion wins and the process converges.
Typically, one would demand from such a voting procedure to run accurately,
that is, the opinion with the highest number of initial supporters should win
with decent probability 1− o(1), and to be efficient, that is, the voting process
should converge within as few communication steps as possible. Additionally,
voting algorithms are usually required to be simple, fault-tolerant, and easy to
implement [HP01, Joh89].
Distributed voting algorithms have applications in a multitude of fields. In

distributed computing, applications contain, among others, consensus [HP01]
and leader election [BMPS04]. Early results in other areas can be attributed
to distributed databases [Gif79] where voting algorithms have been used to
serialize read and write operations. In game theory, distributed voting is used
to analyze social behavior [DP94]. Also, as already discussed in Part III, the
existence and characterization of so-called monopolies, which are sets of nodes
that dominate the outcome of the voting process, have been investigated [Ber01,
Pel02, Pel14, ACF+15]. Various processes based on the majority rule were
analyzed in the study of influence networks [FKW13, LM15], and they have
been used to measure the competition of opinions in social networks [MT14].

141

16 Introduction

Variants of these processes are applied for distributed community detection
[CG10, KPS13, RAK07]. In computational sciences, voting processes can be
utilized to model chemical reaction networks [Dot14], neural and automata
networks [GM90], and cells’ behavior in biology [CC12].

Pull Voting

One major line of research on plurality consensus has its roots in gossiping and
rumor spreading. Communication in these models is often restricted to pull
requests, where nodes can query other nodes’ opinions and use a simple rule to
update their own opinion. See [Pel02] for a slightly dated but thorough survey.
One straightforward variant is the so-called pull voting running in discrete

rounds, during which each player contacts a node chosen uniformly at random
from the set of its neighbors and adopts the opinion of that neighbor. The two
works by Hassin and Peleg [HP01] and Nakata et al. [NIY99] have considered
the discrete time two-opinion voter model on connected graphs. In these papers,
each node is initially assigned one of two possible opinions. Their main result is
that the probability for one opinion A to win is PA = d(A)/(2m), where d(A)
denotes the sum of the degrees of all vertices supporting opinion A. It has
furthermore been shown by Hassin and Peleg [HP01] that the expected time
for the two-opinion voting process to converge on general graphs can only be
bounded by O

(
n3 logn

)
. Tighter bounds for the expected completion time on

random d-regular graphs have been shown in [CFR09]. In [CEOR13], Cooper
et al. showed that the convergence time for pull voting on any connected
graph G = (V,E) is asymptotically almost always O(n/(ν(1− λ2))). In this
bound, λ2 is the second largest eigenvalue of the transition matrix of a random
walk on the graph G. The parameter ν measures the regularity of G with
1 ≤ ν ≤ n2/(2m), where the equality ν = 1 holds for regular graphs. Recently,
in [BGKM16] it was shown that the voting time is bounded by O(m/(δ · φ)),
where m is the number of edges in the graph, φ is the conductance of the
underlying graph, and δ is the minimum degree.
The expected convergence time for pull voting is at least Ω(n) on many

graphs, such as regular expanders and complete graphs. Taking into account
that solutions to many other fundamental problems in distributed computing,
such as information dissemination [KSSV00] or aggregate computation [KDG03],
are known to run much more efficiently, Cooper et al. noted that there is room
for improvement. To address this issue, Cooper et al. [CER14] introduced
the two-choices voting process. In this modified process, one is given a graph
G = (V,E) where each node has one of two possible opinions. The process
runs in discrete rounds during which, other than in classical pull voting, every
node is allowed to contact two neighbors chosen uniformly at random. If both
neighbors have the same opinion, then this opinion is adopted, otherwise the
calling vertex retains its current opinion in this round.

They show that in random d-regular graphs, with high probability all nodes

142

agree after O(logn) steps on the largest initial opinion, provided that c1− c2 =
K · (n

√
1/d+ d/n) for K large enough, where c1 and c2 denote the sizes of

the initially largest and second-largest colors. For an arbitrary d-regular graph
G, they need c1 − c2 = K · λ2 · n. In the more recent work by Cooper et al.
[CER+15], the results from [CER14] have been extended to general expander
graphs, cutting out the restrictions on the node degrees but nevertheless
proving that the convergence time for the voting procedure remains in O(logn).
Recently, the authors of [CRRS16] showed the following bound on the consensus
time in regular expanders. If the initial bias between the largest and second-
largest opinion is at least c1 − c2 ≥ Cnmax{

√
logn/c1, λ2}, where λ is the

absolute second eigenvalue of the matrix P = Adj(G)/d and C is a suitable
constant, then the largest opinion wins in O((n logn)/c1) steps, with high
probability.
One extension is five-sample voting in d-regular graphs with d ≥ 5, where

in each round at least five distinct neighbors are consulted. Abdullah and
Draief showed an O(logd logd n) bound [AD15], which is tight for a wider class
of voting protocols. A more general analysis of multi-sample voting has been
conducted by Cruise and Ganesh [CG14] on the complete graph.
Becchetti et al. [BCN+14] consider a similar update rule on the clique for

k opinions. Here, each node pulls the opinion of three random neighbors and
adopts the majority opinion among those three (breaking ties uniformly at
random). They need O(log k) memory bits and prove a tight run time of
Θ(k · logn) for this protocol, given a sufficiently large bias c1 − c2. Moreover,
they show that if the bias is only of order

√
kn, then with constant probability

the difference c1−c2 decreases. As we show in this part, the two-choices process
behaves differently since the difference required by the two choices process is
only Ω

(√
n logn

)
. The reason for this phenomenon is that the variance of the

number of nodes switching per round differs largely in these two processes. In
the regime where all opinions are roughly of the same size, the probability
of switching in the two-choices process is o(1), whereas it is 1 − o(1) in the
3-majority process. More details can be found in Section 17.2.

In another recent paper, Becchetti et al. [BCN+15b] build upon the idea of
the 3-state population protocol by Angluin et al. [AAE08]. Using a slightly
different time and communication model, they generalize the protocol to k
opinions. In their model, nodes act in parallel and in each round pull the
opinion of a random neighbor. If it holds for the largest color that c1 ≥ (1+ε)·c2

for a constant ε > 0, the number of colors is bounded by k = O
(
(n/ logn)1/3

)
,

and under presence of log k + O(1) bits of memory, their protocol agrees with
high probability on the plurality opinion in time O(md(c) · logn) in the clique.
Here, md(c) is the so-called monochromatic distance that depends on the initial
opinion distribution c. In contrast to all the results above for k > 2 opinions,
we only require a bias of size O

(√
n logn

)
.

Also interested in balancing the requirement for additional memory with
convergence time, in [BFGK16] the authors propose two plurality consensus

143

16 Introduction

protocols. Both assume a complete graph and realize communication via the
random phone call model. The first protocol is very simple and, with high prob-
ability, achieves plurality consensus within O

(
log(k) · log logγ n+ log logn

)
rounds using Θ(log log k) bits of additional memory. The second, more sophisti-
cated protocol achieves plurality consensus within O

(
log(n) · log logγ n

)
rounds

using only 4 overhead bits. In both cases, k denotes the number of colors,
and γ denotes the initial relative plurality gap, the ratio between the plurality
opinion and the second-largest opinion. They require an initial absolute gap of
ω
(√

n log2 n
)
. At the heart of their protocols lies the use of the undecided state,

originally introduced by Angluin et al. [AAE08]. A very recent result by Ghaf-
fari and Parter [GP16] introduces a protocol for plurality consensus with time
and memory bounds similar to our bounds for Algorithm 18.1. They employ a
similar basic idea of consolidation and bit-propagation rounds, which they refer
to as selection and recovery. While aspects of [GP16] and the first protocol in
[BFGK16] are similar to our own protocol described in Chapter 18 (in terms
of expectation but not distribution), they were all developed independently
and initially approached the problem with different specific objectives.
Another interesting model allows for adversarial corruption of opinions.

Doerr et al. [DGM+11] investigate the so-called 3-median rule which allows an
adversary to arbitrarily change the opinion of F =

√
n arbitrary nodes. The

required time to reach near-consensus is O(log k log logn+ logn), where k is
the size of the set of opinions. Their algorithm assumes a total ordering on the
opinions and requires nodes to be able to perform basic algebraic operations. In
a recent paper, Becchetti et al. [BCN+16] overcome these assumptions and show
that the 3-majority rule is stable against an F = o(

√
n) dynamic-adversary. It

is worth noting that both [BCN+16, DGM+11] are only interested in consensus
and not necessarily plurality, which would mean that the initially dominant
color wins with high probability if the initial bias is large enough.

Population Protocols

The second major line of work on majority voting considers population protocols,
in which the nodes usually act asynchronously. In its basic variant, nodes are
modeled as finite state machines with a small state space. Communication
partners are chosen either adversarially or randomly, see [AAER07, AR07]
for a more detailed description. Angluin et al. [AAE08] propose a 3-state
(that is, constant memory) population protocol for majority voting with k = 2
in the clique to model the mixing behavior of molecules. We refer to their
communication model as the sequential model. In each time step, an edge is
chosen uniformly at random, such that only one pair of nodes communicates. To
allow for an easier comparison with the synchronous model, we will normalize
the run time of all sequential algorithms and continuous processes throughout
this part by dividing their runtime by n [AGV15]. To make this explicit,
we sometimes refer to this as parallel time. This is a typical measure for

144

population protocols and based on the intuition that, in expectation, each node
communicates with one neighbor within n time steps. If the initial bias c1 − c2
is ω(

√
n logn), their protocol lets all nodes agree with high probability on the

majority opinion in O(n · logn) steps. Mertzios et al. [MNRS14] showed that
this 3-state protocol fails on general graphs, that is, there are infinitely many
graphs on which it returns the minority opinion or has exponential run time.
They also provide a 4-state protocol for exact majority voting, which in time
O
(
n5) always returns the majority opinion, independently of the initial bias, in

arbitrary graphs, and in time O
(
n2 · logn/(c1 − c2)

)
in the clique. This result

is optimal in that no population protocol for exact majority can have fewer
than four states. In a recent paper, Alistarh et al. [AGV15] gave a sophisticated
sequential protocol for k = 2 in the clique. It solves exact majority and has,
with high probability, parallel run time O

(
log2 n/(s · (c1 − c2)) + log2 n · log s

)
,

where s is the number of states with s = O(n) and s = Ω(logn · log logn).
Recall that the parallel run time in the sequential model is the number of
sequential time steps divided by n [AGV15]. Most recently, Cooper et al.
[CDFR16] considered the Discordant voting processes on finite graphs for
k = 2. In their protocol, an edge whose endpoint colors differ is said to be
discordant and a vertex is discordant if it incident to a discordant edge. The
authors consider different protocols assuming that at every step a randomly
chosen discordant edge is chosen. In contrast to the protocols described above,
we assume that k is a function that grows with n.

Further Models

Apart from the two research lines mentioned above, there is a multitude of
related but quite different models. They differ, for example, in the consensus
requirement, the time model, or the graph models. For completeness, this
paragraph gives a small overview over such variants.
In one very common variant of the voter model [AF02, CEOR13, DW83,

HP01, HL75, LN07, Lig12], the authors are interested in the time it takes
for the nodes to agree on any arbitrary opinion. Another variant [PVV09]
of distributed voting considers the 3-state protocol from [AAE08] for two
opinions in the complete graph, but in a continuous time model. In [AD15],
Abdullah and Draief consider majority voting on special graphs given by a
degree sequence. Other protocols such as the one presented by Draief and
Vojnović [DV12] guarantee convergence to the majority opinion. Moreover,
Berenbrink et al. [BFK+16] use load balancing algorithms to solve the plurality
consensus in general graphs and for general bias. However, in the setting where
the bias is of order

√
n logn and the number of colors is polynomial in n, their

run time becomes substantial.

145

16 Introduction

16.1 Model

In the following section, we will formally introduce the model which we consider
in the remainder of this part. We give a formal definition of the consensus
process in the synchronous and the asynchronous model followed by an overview
of our results in Section 16.2.

Two-Choices Model

We consider the following classical plurality consensus process. We are given
a graph G = (V,E) with |V | = n nodes and |E| = m edges. In this network,
we run the following process in discrete time steps t ∈ N0, starting with time
t = 0. Initially, the nodes are partitioned into k groups representing k colors
C1, . . . , Ck. We denote the set of all colors as C = {C1, . . . , Ck}. Also, we will
occasionally abuse notation and use Ci to denote the set of all vertices having
color Ci. At time t, every node chooses two neighbors uniformly at random,
with replacement. If the chosen nodes’ colors coincide and this color is not the
color of the node itself at time t− 1, then the node switches to this new color
at time t. We denote this process as the plurality consensus process with two
choices. We will say that the process converges when all nodes have the same
color.
Let t denote an arbitrary but fixed time step and let c1, . . . , ck be the

numbers of nodes of colors C1, . . . , Ck at time step t. W.l.o.g., we assume
that at every time step t the colors are ordered in descending order such that
c1 ≥ c2 ≥ · · · ≥ ck. Note that in our analysis we will justify this assumption
by showing that the initial plurality color C1 always remains the largest color
with high probability. Our first two results from Chapter 17 and Chapter 18
will be shown w.r.t. this synchronous model.

In the following, we will denote the dominating color C1 as A with size a = c1
and we will use B to denote the second largest color C2 of size b = c2.

Parallel Asynchronous Model

In the asynchronous model, we are again given a graph G = (V,E) with n = |V |
nodes andm = |E| edges. In this network, we run the following process, starting
at time t0 = 0. As before, the nodes are initially partitioned into k groups
representing the k colors C1, . . . , Ck. Each node v is equipped with a random
clock which ticks in the unit time interval according to a Poisson distribution
with parameter λ = 1. That is, we assume a memory-less random clock, such
that for every node the time between two ticks is exponentially distributed
with parameter λ = 1. Consequently, from the memory-less property it follows
that at any time t each node has the same probability 1/n to be the next one
to tick.
Whenever a node’s clock ticks, the node samples two neighbors u1 and u2

146

16.1 Model

uniformly at random, with replacement, from V . If the chosen nodes’ colors
coincide, v adopts this color. Otherwise, v keeps its current color. We denote
this process as the asynchronous plurality consensus process with two choices.

Sequential Asynchronous Model

While the parallel model described above represents real-world processes for
which event frequencies are commonly modeled by Poisson clocks, we give in
the following a more theoretical yet equivalent model.

We observe that the Poisson distribution used for the clocks in the parallel
model has the so-called memory-less property. That is, at any given time t,
regardless of the previous events, every node has exactly the same probability
to be the next node to tick, namely 1/n. We furthermore assume that, upon
a node’s activation, the execution of one step occurs atomically, that is, no
two nodes are ever active concurrently. Therefore, instead of considering the
asynchronous parallel process in real time, we rather analyze the process in the
so-called sequential model. In this sequential model, we assume that a discrete
time is given by the sequence of ticks, and at any of the discrete time steps, a
node is selected to perform its task uniformly at random from the set of all
nodes.
Observe that we can relate the number of ticks in the sequential model to

the real time in the asynchronous model as follows, see also [AGV15]. We
have for any tick t in the asynchronous sequential model that E[Tt] = t/n,
where Tt is the random variable for the real time of tick t. Moreover, for
the expected number of ticks allotted by the asynchronous voting algorithm
described in Chapter 19, we obtain that the real time is concentrated around
the expected value such that with high probability the asynchronous voting
process converges after at most O(logn) real time units. See, e.g., [BGPS06,
Lemma 1] for details on the concentration.

Stability

In our analysis, we will show that the two-choices process can tolerate the
presence of an adversary which is allowed to arbitrarily change the opinion of
up to F = c1(c1 − c2)/(8n) arbitrarily selected nodes after every round. We
will show that under these assumptions our two-choice process still guarantees
that with high probability a vast majority of nodes accept the plurality opinion,
that is, the initially most dominant opinion. Observe that, similarly, all
our theorems also hold if the adversary is allowed to change opinions at the
beginning of a round. We use a definition similar to the definition by Becchetti
et al. [BCN+16], which in turn has its roots in [AAE08, AFJ06].

Definition 22. A stabilizing near-plurality protocol ensures the following
properties:

147

16 Introduction

1. Almost agreement. Starting from any initial configuration, in a finite
number of rounds, the system must reach a regime of configurations where
all but a negligible bad subset of nodes of size at most O(nε) for some
constant ε < 1 support the same opinion.

2. Almost validity. Given a large enough initial bias, the system is required
to converge to the plurality opinion A, with high probability, where all but
a negligible bad set of nodes have opinion A.

3. Non-termination. In dynamic distributed systems, nodes represent simple
and anonymous computing units which are not necessarily able to detect
any global property.

4. Stability. The convergence to such a weaker form of agreement is only
guaranteed to hold with high probability.

16.2 Our Contribution

Our first main contribution is an extension of the results by Cooper et al.
[CER14] on the complete graph to more than two colors. That is, in our model
we assume that every node of the Kn initially has one of k possible opinions
where k = O(nε) for some small positive constant ε. In the following, we state
this as our first main theorem.

Theorem 61. Let G = Kn be the complete graph with n nodes. Let k = O(nε)
be the number of opinions for some small constant ε > 0. Let c1 be the size
of the largest opinion at the beginning of the process. The plurality consensus
process with two choices defined in Algorithm 17.1 on G converges to A with
high probability within O(n/c1 · logn) time steps, if the initial bias is at least
c1 − c2 ≥ z ·

√
n logn for some constant z. Moreover, assuming this bias,

the process fulfills the stabilizing near-plurality conditions in presence of any
F = c1(c1 − c2)/(8n)-dynamic adversary.

The difficulty in the analysis lies in the possibly diminishingly small initial
mass of A in comparison to the mass of all other colors. Interestingly, the
required initial gap does not depend on the number of opinions present. As we
show later, the required number of time steps is Ω(n/c1 + logn). Moreover,
we show that if c1 − c2 = O(

√
n), then B wins with constant probability.

The resilience of two choices in comparison to other protocols comes at
the price of a large run time. To overcome this issue, we combine the two
choices process with a rumor spreading algorithm. This allows us to obtain a
significantly faster algorithm, which we denote OneBit.
For the algorithm OneBit, we investigate a slightly modified model which

we call the memory model. This improved model is described in full detail
in Chapter 18. In this model, we allow each node to store and transmit one
additional bit. As stated in Theorem 62, this allows us to reduce the run time
from O(n/c1 · logn) to O((log(c1/(c1 − c2)) + log logn) · (log k + log logn)) =

148

16.2 Our Contribution

O
(
log2 n

)
, while still the dominating color wins with high probability, assuming

only a slightly larger initial bias towards the dominating color than in the
two-choices approach. The bound becomes O(log logn · (log k + log logn)) for
c1 ≥ c2

(
1 + 1/logO(1) n

)
. If we assume that a tight upper bound on n/c1

is known to the nodes, the run time of OneBit can further be improved
to O((log logn) · (log(n/c1) + log logn)). The theorem is formally stated as
follows.

Theorem 62. Let G = Kn be the complete graph with n nodes. Let k = O(nε)
be the number of opinions for some small constant ε > 0. The plurality
consensus process OneBit defined in Algorithm 18.1 on G converges within

O((log(c1/(c1 − c2)) + log logn) · (log k + log logn))

time steps to A, with high probability, if c1 − c2 ≥ z ·
√
n log3 n for some

constant z.

This can be further improved to O((log(c1/(c1 − c2)) + log logn) · log k) if
we change the algorithm slightly as described in Chapter 18. As mentioned
earlier, essentially the same result was obtained, independently, by Berenbrink
et al. [BFGK16] with the first protocol in their paper.
Note that also in the classical two-choices protocol each node implicitly is

assumed to have local memory, which is used, e.g., to store its current opinion.
The main difference between the classical model and the memory model is that
in the memory model each node also transmits one additional bit along with its
opinion when contacted by a neighbor. In contrast to existing work considering
k > 2, our algorithm ensures that the dominant color A wins within a small (at
most O

(
log2 n

)
) number of rounds, even if the bias is only O

(√
n log3 n

)
. The

thorough analysis of this synchronous algorithm is the basis for understanding
and analyzing the corresponding asynchronous protocol.
Our final main contribution is an adaption of the algorithm OneBit to the

asynchronous setting. The main question is whether the same (or similar)
results as in the synchronous case can also be obtained in the asynchronous
setting. As discussed below in more detail, a straight-forward observation is
that in the sequential asynchronous model many nodes may remain unselected
for up to O(logn) time steps. Therefore no algorithm can converge in o(logn)
steps. Thus, our aim is to construct a protocol that solves plurality consensus
in O(logn) time. We show that if the difference between the numbers of the
largest two opinions is at least Ω(c2), where c2 is the size of the second largest
opinion, and k = nO(1/ log2 logn), then our algorithm solves plurality consensus
and achieves the best possible run time of O(logn), provided a node is allowed
to communicate with at most constantly many other nodes in a step.

The key to the rapidity of OneBit is that we pair a phase in which all nodes
execute the two-choice process with a phase in which successful opinions are

149

16 Introduction

propagated quickly – much like in broadcasting. For this to work it is crucial
to separate the two phases. While this is trivial in the synchronous setting,
it is impossible in the asynchronous setting. The number of activations of
different nodes can easily differ by Θ(logn), rendering any attempt of full
synchronization futile if one aims for a run time of O(logn). Thus, we restrict
ourselves to the concept of weak synchronicity as follows. At any time we only
require that a fraction of 1− o(1) nodes are almost synchronous. To cope with
the influence of the remaining nodes, we rely on a toolkit of gadgets, which
we believe are interesting in their own right. The obtained weak synchronicity
allows us to use the high-level structure of the proof and the analysis of OneBit.
Our result is formally stated in the following theorem.

Theorem 63. Let G = Kn be the complete graph with n nodes. Let k =
exp

(
O
(
logn/ log2 logn

))
be the number of opinions. Let εbias > 0 be a con-

stant. The asynchronous plurality consensus process AsyncPlurality defined
in Algorithm 19.1 on G converges within time Θ(logn) to the majority opinion
A, with high probability, if c1 ≥ (1 + εbias) · ci for all i ≥ 2.

150

17
Plurality Consensus with
Two Choices

In this chapter we prove our first main theorem stated in Theorem 61. The
algorithm discussed in this chapter is formally defined in Algorithm 17.1.

The structure of the proofs is as expected. We show using Chernoff bounds
that the number of nodes which change their opinion to A is larger than the
number of nodes which switch to B. Given that the initial bias is large enough,
the difference between A and B increases rapidly in every round with high
probability and using union bound yields the theorem. The difficult part lies
in bounding the the number of switches to A and to B. Indeed, just applying
Chernoff bound on every single color appears to lead to much weaker results.
instead, we carefully aggregate colors when considering the nodes switching to
A and B. Intuitively, the difficulty lies in the sheer number of initial opinions
we allow. In fact, their total mass tremendously exceeds, in contrast to most
previous work, the initial mass of A.
Let fij denote the random variable for the flow from color Ci to color Cj ,

that is, fij at a given time step t represents the number of nodes which had
color Ci at the previous time step t− 1 and switched to color Cj at time t. We
will use c′1, . . . , c′k to denote the number of nodes of corresponding colors after
the switching has been performed before the adversary changes F arbitrary
nodes.

For simplicity of notation, we will assume that in the following the dominating
color C1 is denoted as A with a = c1. Furthermore, we will use B to denote
the second largest color C2 of size b = c2. Also, we will use fAB and fBA to
denote f1,2 and f2,1, respectively.

Observe that in the complete graph the number fij of nodes switching from Ci
to Cj has a binomial distribution with parameters fij ∼ B(ci, c2

j/n
2). Clearly,

151

17 Plurality Consensus with Two Choices

Algorithm two-choices(G = (V,E), color : V → C)
for round t = 1 to |C| · log |V | do

at each node v do in parallel
let u1, u2 ∈ N(v) uniformly at random;
if color(u1) = color(u2) then

color(v) ← color(u1);

Algorithm 17.1: distributed voting protocol with two choices

the expectation and variance of fij are

E[fij] =
ci · c2

j

n2 and Var[fij] =
ci · c2

j (n− cj)(n+ cj)
n4 .

Observe that if a ≥ (1/2 + ε1)n for some constant ε1 > 0, the process
converges within O(logn) steps with high probability. This follows from
[CER14] since in the case of a ≥ (1/2 + ε1)n the process is stochastically
dominated by the two color voting process. In order to increase readability
we assume in the following that a ≤ n/2. Furthermore, observe that a > n/k,
since A is the largest of k color classes. We start with the following definitions.

Let S ⊆ C be a set of colors. We will use the random variable fiS to denote
the sum of all flows from color Ci to any color in S and fSi to denote the sum
of all flows from any color in S to Ci. We have in expectation

E[fSi] =
∑
Cj∈S

cj · c2
i

n2 and E[fiS] =
∑
Cj∈S

ci · c2
j

n2 .

Let Ci be a color and Ci be the set of all other colors, defined as Ci = C \ Ci.
We observe that after one round the new number of nodes supporting Ci is a
random variable

c′i = ci +
∑
j 6=i

fji −
∑
j 6=i

fij = ci + fCii − fiCi .

Since all nodes perform their choices independently, the first sum fCii has a
binomial distribution with parameters fCii ∼ B(n− ci, c2

i /n
2). Furthermore,

every node of color Ci changes its color away from Ci to any other opinion
with probability paway

i =
∑
j 6=i c

2
j/n

2. Therefore, the second sum fiCi also has
a binomial distribution with parameters fiCi ∼ B(ci, paway

i). That is, we have
in expectation

E
[
c′i
]

= ci + (n− ci)c2
i

n2 − ci
n2

∑
j 6=i

c2
j . (17.1)

Note that these expected values are monotone w.r.t. the current size. This is
described more formally in the following observation.

152

Observation 64. Let Cr and Cs be two colors. It holds that if cr ≤ cs then
E[c′r] ≤ E[c′s].

Proof. We first rewrite (17.1) as

E
[
c′i
]

= ci + c2
i

n
− ci
n2

∑
Cj
c2
j = ci

1 + ci
n
−
∑
Cj

c2
j

n2

 .

Using this representation of E[c′i] gives us

E
[
c′r
]

= cr

1 + cr
n
−
∑
Cj

c2
j

n2

 cr≤cs
≤ cs

1 + cs
n
−
∑
Cj

c2
j

n2

 = E
[
c′s
]
.

For the following lemma, recall that A = C1 denotes the dominant color of
size a = c1 and B = C2 denotes the second largest color of size b = c2.

Lemma 65. Let A be the dominating color and B be the second largest color.
Assume that a− b > z ·

√
n logn. There exists a constant z such that a′ − b′ >

(a− b)(1 + a/4n) with high probability.

In the following proof we utilize certain methods which have also been used
in [CER14] for the two-opinion plurality consensus process with two choices in
more general graphs.

Proof. First we observe that

E
[
a′ − b′

]
= a+ E

[
fAA

]
− E

[
fAA

]
− b− E

[
fBB

]
+ E

[
fBB

]
= a+ (n− a) · a

2

n2 −
a

n2

∑
Ci 6=A

c2
i − b− (n− b) · b

2

n2 + b

n2

∑
Ci 6=B

c2
i

= a− b+ 1
n2

a2n− a3 − b2n+ b3 − a
∑
Ci 6=A

c2
i + b

∑
Ci 6=B

c2
i


= a− b+ 1

n2

n(a2 − b2
)
− a

a2 +
∑
Ci 6=A

c2
i

+ b

b2 +
∑
Ci 6=B

c2
i


= a− b+ 1

n

(
a2 − b2

)
− 1
n2

a∑
Ci
c2
i − b

∑
Ci
c2
i


= a− b+ (a− b)(a+ b)

n
− 1
n2

∑
Ci
c2
i (a− b)

= (a− b) ·

1 + (a+ b)
n

− 1
n2

∑
Ci
c2
i

 .

153

17 Plurality Consensus with Two Choices

We now use that A and B are the largest and second largest colors, respectively,
to bound the sum

∑
Ci c

2
i as follows.∑

Ci
c2
i = a2 +

∑
Ci 6=A

c2
i ≤ a2 +

∑
Ci 6=A

ci · b = a2 + (n− a) · b ≤ a2 + n · b

Therefore, we obtain

E
[
a′ − b′

]
≥ (a− b)

(
1 + (a+ b)

n
− a2 + n · b

n2

)

≥ (a− b)
(

1 + a

n
·
(

1− a

n

))

and since a ≤ n/2 we finally get

E
[
a′ − b′

]
≥ (a− b)

(
1 + a

2n

)
.

We now apply Chernoff bounds to a′ − b′. Let δ1, δ2, δ3, δ4 be defined as

δ1 = 2
√
n logn
a

, δ2 = 2n
√

logn√
a
∑
Ci 6=A c

2
i

,

δ3 = 2
√
n logn
b

, and δ4 = 2n
√

logn√
b
∑
Ci 6=B c

2
i

for the corresponding random variables fAA, fAA, fBB, fBB with expected
values µ1, µ2, µ3, µ4 given by

µ1 = (n− a)a
2

n2 , µ2 = a

n2

∑
Ci 6=A

c2
i ,

µ3 = (n− b) b
2

n2 , and µ4 = b

n2

∑
Ci 6=B

c2
i .

Since a ≤ n/2 we know for the second largest color B that b ≥ n/2k. Together
with a ≥ n/k ≥ n1−ε we get 0 < δi < 1 and δ2

i · µi = Ω(logn) for i = 1, 2, 3, 4.
We now apply Chernoff bounds to a′ − b′ and obtain with high probability

a′ − b′ ≥ (a− b) ·
(

1 + a

2n

)
− E

154

where the error term E is bounded as follows.

E = δ1 · µ1 + δ2 · µ2 + δ3 · µ3 + δ4 · µ4

= 2
√
n logn
n2

an− a2 +
√
an

∑
Ci 6=A

c2
i + bn− b2 +

√
bn

∑
Ci 6=B

c2
i


≤ 2
√
n logn
n2

√n∑
Ci
c2
i

(√
a+
√
b
)

+ an+ bn


≤ 2
√
n logn
n2 (2an+ an+ bn)

≤ 8a
√
n logn
n

,

where we used that
∑
Ci c

2
i ≤

∑
Ci a · ci ≤ an. From the definition of the lemma

we know that (a− b) ≥ z ·
√
n logn for some constant z. If we assume that z

is large enough, e.g., z ≥ 32, then we get with high probability

a′ − b′ ≥ (a− b) ·
(

1 + a

4n

)
.

While Lemma 65 shows that in the absence of an adversary, the difference
between colors A and B does indeed increase in every round with high proba-
bility, it does not cover the remaining colors Cj for j ≥ 3 nor does it cover an
adversary. To show that also the smaller colors Cj do not interfere with A and
thus the minimum of the difference between A and any Cj increases, we use
the following coupling.

At any time step t, there exists a bijective function which maps any instance
of the two-choices protocol at time t to another instance of the same protocol
such that the outcome c′ of the first instance is at most the outcome b′ of the
mapped instance.

Lemma 66. Let A be the dominating color of size a and let B be the second
largest color of size b. Let C 6= A,B be one of the remaining colors of size c.
Furthermore, let π : V → V be a bijection and let P be the original process. We
can couple a process P ′ = P (π) to the original process P such that c′ (P) ≤ b′ (P ′),
where c′ (P) is the random variable c′ in the original process and b′ (P ′) is the
random variable b′ in the coupled process.

Proof. Let t be an arbitrary but fixed round. In the following, we use the
notation that Bt and Ct are sets containing all vertices of colors B and C,
respectively, in round t. As before, we have color sizes b = |Bt| and c = |Ct|.
The proof proceeds by a simple coupling argument. We start by defining
B̂t,B∗t , C∗t ⊆ V as follows. Let B̂t be an arbitrary subset of Bt such that
|B̂t| = |Ct|. Let furthermore B∗t be defined as B∗t = Bt \ B̂t, and finally let C∗t
be an arbitrary subset of V \ (Bt ∪ Ct) such that |C∗t | = |B∗t |.

155

17 Plurality Consensus with Two Choices

Additionally, we construct the bijective function π : V → V as follows. Let
π̂ be an arbitrary bijection between Ct and B̂t. Let furthermore π∗ be an
arbitrary bijection between C∗t and B∗t . We now define π as

π(v) =



π̂(v) if v ∈ C ,

π̂−1(v) if v ∈ B̂ ,

π∗(v) if v ∈ C∗ ,
π∗−1(v) if v ∈ B∗ ,

v if v ∈ V \ (Bt ∪ Ct ∪ C∗t) .

(17.2)

A graphical representation of π can be seen in Figure 17.1.

B∗

C∗

C

π

π

V

B̂

BB

Figure 17.1: schematic representation of the bijective function π defined in (17.2)

It can easily be observed that π indeed forms a bijection on V . We now
use π to couple a process P ′ = P (π) to the original process P , to show that
b′(P

′) ≥ c′(P), where the notation b′(P) means the variable b′ in the original
process P and c′(P ′) means the variable in the coupled process P ′. Let u ∈ V
be an arbitrary but fixed node. The coupling is now constructed such that
whenever u samples a node v ∈ V in the original process P , then u samples
π(v) in the coupled process P ′.
Let X be the set of nodes which change their opinion to C from any other

color in P , that is,

X = {v ∈ V : v /∈ Ct ∧ v ∈ Ct+1} .

Clearly, X consists of two disjoint subsets X = X̂ ∪X∗, defined as

X̂ = {v ∈ V : v /∈ (Ct ∪ C∗t) ∧ v ∈ Ct+1}

and

X∗ = {v ∈ V : v ∈ C∗t ∧ v ∈ Ct+1} .

The set X̂ consists of all nodes which change their opinion to C from any other
color except for nodes in C∗. The set X∗ contains the remaining nodes in C∗

156

Set Process P Process P ′

X nodes which change their color to C nodes which now belong to B̂
X̂ nodes which change their color to C except

nodes from C∗
nodes which change their color to B

X∗ nodes from C∗ which change their color to C nodes which change their color to B
Y nodes which change their color away from C nodes which no longer belong to B̂
Ŷ nodes which change their color away from C

but not to C∗
nodes which change their color
away from B̂ but not to B∗

Y ∗ nodes which change their color from C to C∗ nodes which change from B̂ to B∗

Table 17.1: corresponding sets between processes P and P ′

which change their opinion to C. Analogously to X, let Y be the set of nodes
which change their opinion from C to any other color in P , that is,

Y = {v ∈ V : v ∈ Ct ∧ v /∈ Ct+1} .

Again, we have Y = Ŷ ∪ Y ∗ which are defined as

Ŷ =
{
v ∈ V : v ∈ Ct ∧ v /∈

(
Ct+1 ∪ C∗t+1

)}
and

Y ∗ =
{
v ∈ V : v ∈ Ct ∧ v ∈ C∗t+1

}
.

We now analyze the behavior of these sets in the coupled process P ′. The
coupling ensures the correspondences described in Table 17.1. We therefore
have in P

c′ (P) = c(P) + |X| − |Y | . (17.3)

In P ′, we first observe that |B| = |B̂|+ |B∗| and therefore

b′ (P ′) ≥ b(P ′) + |X̂| − |Ŷ | − (|B∗| − |X∗|) (17.4)
≥ |B̂|+ |B∗|+ |X̂| − |Ŷ | − |B∗|+ |X∗|
= |B̂|+ |X| − |Ŷ |
≥ |B̂|+ |X| − |Y |
= c(P) + |X| − |Y | (17.5)

where the expression |B∗| − |X∗| in (17.4) is an upper bound on the number of
nodes in B∗ which change their color away from B to any other color except
for B̂. Combining equations (17.3) and (17.5) gives us

c′ (P) ≤ b′ (P ′)

which concludes the proof.

157

17 Plurality Consensus with Two Choices

We now use Lemma 65 and Lemma 66 to show our first main result, Theo-
rem 61.

Proof. Let A = C1 be the dominant color and B = C2 the second largest color.
Assume a− b ≥ z ·

√
n logn for a sufficiently large constant z. From Lemma 65

we know that a′− b′ ≥ (a− b) · (1 + a/4n) with high probability. Since B is the
second largest color, we obtain from Lemma 66 for any remaining color Cj with
j ≥ 3 that with high probability a′−c′j ≥ a′−b′ ≥ (a− b)·(1 + a/4n). Note that
it may very well happen, especially if all colors have the same size except for A,
that another color Cj overtakes B. However, the resulting distance between A
and this new second largest color Cj will be larger than (a− b) ·(1 + a/4n) with
high probability. Let a′′ and b′′ denote the sizes of the color after the round, that
is, after the adversary changed the opinion of up to F arbitrary nodes. We have
a′′− b′′ ≥ a′− b′− 2F ≥ (a− b) · (1 + a/4n− 2F/a− b) ≥ (a− b) · (1 + a/8n),
since F = a(a− b)/8n.
Taking union bound over all colors, we conclude that the distance between

the first color A and every other color grows in every round by a factor of
at least (1 + a/4n) with high probability. Therefore, after τ = 4n/a rounds,
the distance between A and B doubles with high probability. Hence, the
required time for A to reach size of at least (1/2 + ε1) · n for a constant ε1 > 0
is bounded by O(n/a · logn). This bias is large enough that we assume in the
following that all nodes which are not of color A are of color B In absence of
an adversary, we can see that after additional O(logn) rounds every node has
with high probability the same color A, see [CER14]. In each individual round,
the growth described in Lemma 65 takes place with high probability. Union
bound over all O(n/a · logn) rounds yields that the protocol indeed converges
to A within O(n/a · logn) rounds with high probability. The same analysis of
[CER14] can be used even in the presence of an adversary. However, in this
case only almost validity according to Definition 22 can be reached, since the
adversary is allowed to change F = o(n) nodes per round.
Finally, we argue that the two-choices process trivially fulfills the property

almost agreement according to Definition 22. Starting from an arbitrary initial
distribution of colors, there is in every round a probability which is positive,
albeit super-exponentially small in n, that all nodes adopt the same round.

17.1 Lower Bounds

In the previous section, we showed that the plurality consensus process con-
verges to A with high probability, if the initial imbalance a− b is not too small.
Precisely, Theorem 61 states that if a− b ≥ z ·

√
n logn for some constant z,

A wins with high probability. Conversely, in the following section we examine
a lower bound on the initial bias. We will show, as stated in Theorem 68,
that for an initial bias a− b ≤ z ·

√
n for some constant z we have a constant

probability that B overtakes A in the first round, that is, Pr[a′ < b′] = Ω(1).

158

17.1 Lower Bounds

Our proof of Theorem 68 is based on the normal approximation of the
binomial distribution. In this context, we adapt Theorem 2 and equation (6.7)
from [Fel68] as stated in the following theorem.

Theorem 67 (DeMoivre-Laplace limit theorem [Fel68]). Let X be a random
variable with binomial distribution X ∼ B(N, p). It holds for any x > 0 with
x = o

(
N 1/6

)
that

Pr

[
X ≥ E[X] + x ·

√
Var[X]

]
= 1√

2π · x
· exp

(
−x22

)
± o(1) .

We now use Theorem 67 and prove Theorem 68 which states that There
exists an initial color assignment for which a = b+ z′ ·

√
n but color B wins

with constant probability even in absence of an adversary.

Theorem 68 (Lower Bound on the Initial Bias). For any k ≤
√
n and constant

z′ there exists an initial assignment of colors to nodes for which a = b+ z′ ·
√
n

but Pr[a′ < b′] = Ω(1) even in absence of an adversary.

Proof. Let z = z′/2 and n′ = n−k+2
2 . Assume that we have the following initial

color distribution among the nodes.

(c1, c2, c3, . . . , ck) =
(⌊
n′
⌋

+
⌊
z ·
√
n
⌋
,
⌈
n′
⌉
−
⌊
z ·
√
n
⌋
, 1, . . . , 1

)
.

Clearly,
∑
Cj cj = n. In the following we will omit the floor and ceiling functions

for simplicity and readability reasons. First, we start by giving an upper bound
on the number of nodes which change their color away from B. Now recall that
fBB follows a binomial distribution fBB ∼ B(b,

∑
Cj 6=B c

2
j/n

2) with expected
value

E
[
fBB

]
= b · a

2 + k − 2
n2

=
(
n′ − z ·

√
n
)
· (n′ + z ·

√
n)2 + k − 2
n2

≤ (n′ + z ·
√
n)3 + k − 2
n2

≤ n

8 + 4z
√
n .

Applying Chernoff bounds to fBB gives us

Pr

[
fBB ≥

(
1 +

√
3/E

[
fBB

])
· E
[
fBB

]]
≤ 1/e . (17.6)

That is, with constant probability at least 1− 1/e we have

fBB ≤
(

1 +
√

3/E
[
fBB

])
· E
[
fBB

]
≤ n

8 + 4z
√
n+

√
3 · E

[
fBB

]
≤ n

8 + (4z + 1) ·
√
n .

159

17 Plurality Consensus with Two Choices

Secondly, we give the following lower bound on the number of nodes which
change their color from A to B. Again, the random variable fAB for the flow
from A to B has a binomial distribution fAB ∼ B

(
a, b2/n2) with expected

value

E[fAB] =
(
n′ + z ·

√
n
)
· (n′ − z ·

√
n)2

n2

≥ (n′ − z ·
√
n)3

n2

≥ (n/2− (z + 1/2)
√
n)3

n2

≥ n

8 − 4z
√
n

and variance

Var[fAB] = E[fAB] ·
(

1− (n′ − z ·
√
n)2

n2

)

≥ n

9 ·
1
2 = n

18 .

We now apply Theorem 67 to fAB. Let x be a constant which we define as
x =

√
18
2 (18z + 4). We derive

Pr

[
fAB ≥ E[fAB] + x ·

√
Var[fAB]

]
= 1√

2π · x
exp

(
−x2/2

)
± o(1) = Ω(1) .

That is, we have with constant probability

fAB ≥ E[fAB] + x ·
√

Var[fAB] ≥ n

8 − 4z
√
n+ x ·

√
n

18 . (17.7)

Finally, assume that in the worst case every node of colors C3, . . . , Ck changes
to A but not a single node changes away from A to these colors C3 to Ck.
Observe that fBB is an upper bound on fBA. Therefore,

a′ − b′ ≤ (a+ (k − 2) + fBA − fBA)−
(
b+ fAB − fBB

)
≤ a− b+ (k − 2) + 2fBB − 2fAB
≤ 2z ·

√
n+ (k − 2) + 2fBB − 2fAB

≤ (2z + 1) ·
√
n+ 2fBB − 2fAB .

We plug in (17.6) and (17.7) to bound the random variables fAB and fBB and
obtain with constant probability

a′ − b′ ≤ (2z + 1) ·
√
n+ 2

(
n

8 + (4z + 1)
√
n

)
− 2

(
n

8 − 4z
√
n+ x ·

√
n

18

)
= (2z + 1 + 8z + 2 + 8z − 2x/

√
18) ·

√
n

= (18z + 3− 2x/
√

18) ·
√
n

160

17.1 Lower Bounds

which gives us for x =
√

18
2 (18z + 4)

a′ − b′ < 0 .

Therefore, we have Pr[a′ < b′] = Ω(1) and thus we conclude that color B
prevails with constant probability.

Lower Bound on the Run Time

Theorem 69 (Lower Bound on the Run Time). Assume the initial bias is
exactly z

√
n logn for some constant z. The number of rounds required for

plurality consensus process defined in Algorithm 17.1 to converge is at least
Ω(n/a+ logn) with constant probability even in absence of an adversary.

Proof. Let a(t) denote the size of color A in round t. Assume A is the largest
color of initial size a(0) = n/k+z ·

√
n logn. Furthermore, assume that k ≥ 3 ·z.

We show by induction on the rounds that a(t) ≤ a(0) · (1 + 3 · a(0)/n)t for
1 ≤ t ≤ n/(10 · a(0)) with probability 1− t/n. First we note that

a(t) ≤ a(0) ·
(

1 + 3 · a(0)
n

)t
≤ a(0) ·

(
1 + 3 · a(0)

n

)n/(10·a(0))

≤ a(0) · exp(1/2)
≤ 2 · a(0) (17.8)

and

a(t) ≥ a(0) . (17.9)

We now prove the induction claim. The base case holds trivially. Consider
step t+ 1. By induction hypothesis we have with probability at least 1− t/n
that a(t) ≤ a(0) · (1 + 3 · a(0)/n)t. Note that we have with high probability

a(t+ 1) ≤ a(t) + fAA

≤ a(t) +

1 +
√

3 logn√
E
[
fAA

]
 · E[fAA] ,

161

17 Plurality Consensus with Two Choices

where the latter inequality follows by Chernoff bounds. Using (17.8) and (17.9),
we derive

a(t+ 1) ≤ a(t) +
(

1 +
√

3 logn√
a(t)2/(2 · n)

)
a(t)2

n

≤ a(t) +
(

1 +
√

3 logn√
a(0)2/(2 · n)

)
a(t)2

n

≤ a(t) + 3
2 ·

a(t)2

n

= a(t) ·
(

1 + 3
2 ·

a(t)
n

)
≤ a(t) ·

(
1 + 3 · a(0)

n

)
.

From the induction hypothesis we therefore obtain

a(t+ 1) ≤ a(0) ·
(

1 + 3 · a(0)
n

)t
·
(

1 + 3 · a(0)
n

)
= a(0) ·

(
1 + 3 · a(0)

n

)t+1
.

Using a union bound to account for all errors, we derive that with probability at
least 1−(t+ 1)/n we have a(t+1) ≤ a(0) ·(1 + 3 · a(0)/n)t+1, which completes
the proof of the induction and proves the lower bound of Ω(n/a).

In the remainder we establish the bound Ω(logn). Assume only two colors A
and B, whereA is the largest color of initial size a(0) = n/2+

√
n logn. We show

by induction on the rounds that a(t) ≤ a(0) + 6t
√
n logn for 1 ≤ t ≤ logn/20

with probability 1− 2t/n. First we note that

a(t) ≤ a(0) + 6t
√
n logn ≤ n/2 + n5/6 < n

and

a(t) ≥ a(0) .

We now prove the induction claim. The base case holds trivially. Consider
step t+ 1. By induction hypothesis we have with probability at least 1− 2t/n
that a(t) ≤ a(0) + 6t

√
n logn. We have, writing a = a(t) and β = 6t

√
n logn.

n2 · E
[
fAA − fAA

]
= (n− 1)a2 − a · (n− a)2 = (n− a)a(2a− n)
≤ n/2 · a · 2β = n · β(n+ β) = n2 · β + n · β2 .

162

17.2 Comparison with the 3-Majority Process

Similarly as before, we obtain by Chernoff bounds, that with high probability

a(t+ 1)− a(t) = fAA − fAA

≤

1 +
√

3 logn√
E
[
fAA

]
E

[
fAA

]
−

1−
√

3 logn√
E
[
fAA

]
E

[
fAA

]
≤ E

[
fAA − fAA

]
+ 2

√
3 logn ·

√
E
[
fAA

]
≤ β + β2/n+ 2

√
3 logn ·

√
n ≤ 3β .

From the induction hypothesis we therefore obtain

a(t+ 1) ≤ a(0) + 6t
√
n logn+ 3β

≤ a(0) + 6t+1√n logn ,

which completes the induction and yields the lower bound of Ω(logn).

17.2 Comparison with the 3-Majority Process

In this section we elaborate on the difference between the two-choices process
and the 3-majority rule [BCN+14], where in the latter each node pulls the
opinion of three random neighbors and adopts the majority opinion among
those three, breaking ties uniformly at random. As mentioned before, the
3-majority process of [BCN+14] uses O(log k) memory bits and the authors
prove a tight run time of Θ(k · logn) for this protocol, given a sufficiently high
bias c1 − c2. Moreover, they show that if the bias is only of order

√
kn, then

with constant probability the difference c1−c2 decreases. This is fundamentally
different to the two-choices process, where we only require a bias of Ω

(√
n logn

)
.

The reasons are the following. First, the variance in the 3-majority process
can be of orders of magnitude larger and second, the expected increase in
the difference between the largest and second largest color in the 3-majority
process is only of order of the variance. As for the variance, consider an initial
setting where all colors are of sublinear size and A and B are larger than all
other colors, such that

o(n) = a = b+ c
√
n logn > cj + c

√
n logn

and

cj = (n− b− a)/(k − 2)

for all 2 ≤ j ≤ k with k = nε for constants ε and c. Observe that the
expected number of switches differs largely. In the two-choices process it is very
unlikely for a node to pick a node of the same color twice and the probability
of switching is o(1). In contrast to this, the probability of switching in the
3-majority process is 1− o(1).

163

17 Plurality Consensus with Two Choices

More illustrative, consider the number of switches to color B. By Lemma 2.1
of [BCN+14], the probability that a node switches in the 3-majority process to
color B is p ∈ [b/n, 2b/n] and the variance becomes n ·p ·(1−p) ≥ b/2. However,
in the two-choices process, the probability of switching to B is q = b2/n2 and
the variance is thus a at most n · q · (1− q) ≤ n · q = b2/n, which is considerably
smaller than b/2. This high variance paired with the small expected increase
in the difference between A and B becomes easily fatal. Again, by Lemma
2.1 of [BCN+14], one can verify that E[a′ − b′] ≤ a − b + (a2 − b2)/n. Now
we have Pr[a′ ≤ E[a′]] = Ω(1) and, using the large variance, we obtain from
Theorem 67 that

Pr
[
b′ ≥ b+ (a2 − b2)/n

∣∣a′ ≤ E
[
a′
]]
≥ Pr

[
b′ ≥ b+ (a2 − b2)/n

]
≥ Pr

[
b′ ≥ E

[
b′
]

+ Var
[
b′
]]

= Ω(1) .

Thus the distance between A and B decreases with constant probability, that is,
Pr[a′ − b′ < a− b] = Ω(1). In comparison to this, we have seen in Chapter 17
that in the given setting the distance between A and B in the two-choices
process increases with high probability.

164

18
One Bit of Memory

In this chapter we investigate the OneBit protocol which combines the guaran-
tees of the two-choices process to reach plurality consensus with the speed of
broadcasting. The protocol consists of Θ(log(n/a) + log logn) phases which
in turn consist of two sub-phases, one round of the Two-Choices process and
multiple rounds of the so-called Bit-Propagation sub-phase. In the latter
Bit-Propagation sub-phase, each node that changed its opinion during the
preceding two-choice step broadcasts its new opinion.

More precisely, we consider the modified model where each node is allowed
to store and transmit one additional bit. This bit is set to True if and only if a
node changed its opinion in the Two-Choices sub-phase. In the Bit-Propagation
sub-phase, each node u samples nodes randomly until a node v with a bit set
to True is found. Then u adopts v’s opinion and sets its own bit to True, which
means that subsequently any node sampling u will set their bit directly.
The first sub-phase ensures that in a round t the number of nodes holding

opinion A and having their bit set to True is concentrated around a2
t−1/n.

After the Bit-Propagation sub-phase, all nodes will have their bit set, and
the distribution and the size of A’s support is concentrated around a2/x(1),
where x(1) is the total number of bits set after the Two-Choices sub-phase.
Moreover, we show that no other color grows faster. In fact, we show that
the distance between A and any opinion Cj 6= A increases quadratically, that
is, a′/c′j ≥ (1 − o(1)) · a2/c2

j . Due to the quadratic growth in the distance
between A and every other opinion, the number of phases required is only of
order Θ(log(n/a) + log logn). The process runs in multiple phases of length
Θ(log k + log logn) each, therefore we assume that every node is aware of
(upper bounds on) n and k. The process is formally defined in Algorithm 18.1.

If we assume that each node has knowledge of n/a, the run time can be further
reduced to O((log(c1/(c1 − c2)) + log logn) · (log (n/a) + log logn)), given n/a
is smaller than ko(1). We start our analysis with Lemma 70 where we derive
a lower bound on the number of bits set during the two-sample step. We

165

18 One Bit of Memory

Algorithm memory(G = (V,E), color : V → C, bit : V → {True,False})
for phase s = 1 to ` log(U) + log logn do

at each node v do in parallel /* two-choices (Round 1) */
let u1, u2 ∈ N(v) uniformly at random;
if color(u1) = color(u2) then

color(v) ← color(u1);
bit(v) ← True ;

else
bit(v) ← False ;

for round t = 2 to 2 log k + 2 log logn do /* bit-propagation */
at each node v do in parallel

let u ∈ N(v) uniformly at random;
if bit(u) then

color(v) ← color(u);
bit(v) ← True ;

Algorithm 18.1: distributed voting protocol OneBit with one bit of memory. The
variable ` is a large constant and U is an upper bound on c1/(c1 − c2). Since the process
runs in multiple phases of length Θ(log k + log logn) each, we assume that every node
has knowledge of ` · U , n and k.

will then use the results by Karp et al. [KSSV00] to argue that after the
bit-propagation rounds the number of bits set is n with high probability, that
is, the total number of bits set grows until eventually every node has its bit
set. Finally, we will prove in Lemma 74 that the relative number of bits set for
large colors remains close to the initial (relative) value during the propagation
steps. Together with the growth of the total number of set bits, this leads to a
growth of the imbalance towards A by at least a constant factor during each
phase.
We will use x(i)(t) to denote the random variable for the total number of

nodes which have their bit set in a round t of phase i. When it is clear from the
context, we simply use the notation x(t). Accordingly, x(i)(1) is the number
of bits set after the two-choices round of phase i. Additionally, we will use
x

(i)
j (t) to denote the number of nodes of color Cj which have their bit set in

a round t. Similarly as before, we simply write xj(t) when the phase is clear
from the context. Furthermore, when analyzing the growth in x(i)(t) and x(i)

j (t)
with respect to x(i)(t− 1) and x(i)

j (t− 1), we will assume that x(i)(t− 1) and
x

(i)
j (t− 1) are fixed.
In the following lemmas we analyze an arbitrary but fixed phase.

Lemma 70. After the two-choices round, at least Ω(n/k) bits are set with
high probability.

Proof. The probability for one node to open connections to two nodes of the

166

same color is ptwo-choices =
∑
Cj

c2j
n2 . This probability is minimized if all colors

are of the same size n/k and therefore pmin = 1
n2 ·

∑
Cj

n2

k2 = 1
k . Since all nodes

open connections independently, the random variable for the number of bits set
after the two-choices round, x(1), has a binomial distribution with expected
value at least E[x(1)] ≥ n/k. Applying Chernoff bounds to x(1) gives us

Pr

x(1) ≤

1− 2

√
k logn
n

n
k

 ≤ exp
(
−4kn logn

2kn

)
= n−2 .

From the lemma above we obtain that we have at least x(1) = n/k ·
(1− o(1)) = Ω(n/k) bits set after the first round with high probability. We
now investigate the growth of x(t) in the following rounds.

Lemma 71 (Pull Rumor Spreading [KSSV00]). With high probability, after
at most T = O(log k + log logn) bit propagation rounds, we have x(T) = n.
Furthermore, it holds that 1 ≤ x(t + 1)/x(t) ≤ 2 + o(1) and there exists a
monotonically increasing function f : N → N such that x(t) = x(1) · f(t) ·(

1± 1/nΩ(1)
)
, with high probability.

In the following, we focus on the colors that are present among those nodes
which have their bit set. We start by showing that the initial number of bits is
well-concentrated around the expectation for colors which are large enough.

Lemma 72. For any color Cj with cj = Ω
(√
n logn

)
the number of nodes of

color Cj which have their bit set after the two-choices round is concentrated
around the expected value, that is,

xj(1) = E[xj(1)]
(

1±O
(√

logn/
√

E[xj(1)]
))

with high probability. If cj = O
(√
n logn

)
, then xj(1) = O(logn) with high

probability.

Proof. Let Cj be an arbitrary but fixed color with cj > 3
√
n logn. The

number of nodes of color Cj which have their bit set after the two-choices
round has a binomial distribution xj(1) ∼ B(n, c2

j/n
2) with expected value

E[xj(1)] = c2
j/n > 9 logn. We apply Chernoff bounds to xj(1) and obtain

Pr

[
|xj(1)− E[xj(1)]| > 3

√
logn

E[xj(1)] · E[xj(1)]
]
≤ n−2 .

That is, we have |xj(1)− E[xj(1)]| ≤ 3
√

logn · E[xj(1)] with high probability.
The second statement can be shown in an analogous way.

167

18 One Bit of Memory

Lemma 73. Let Cj be a color with at least xj(t) = Ω(logn) bits set in a round
t. Assume x(t) and xj(t) are given and they are concentrated around their
mean. Then we have

E[xj(t+ 1)|x(t), xj(t)] = xj(t) + n− x(t)
n

· xj(t) .

Furthermore, the number of nodes of color Cj which have their bit set in round
t+ 1 is with high probability concentrated around the expected value such that

xj(t+ 1) = E[xj(t+ 1)|xj(t), x(t)] ·

1±O

 √
logn√

E[xj(t+ 1)|x(t), xj(t)]

 .

Proof. In the following, we will use bitv(t) to denote the value of the bit of a
node v in a round t, where the value can be either True or False. We consider
the probability that v has color Cj in round t+ 1, given that v has its bit set
in round t+ 1. We have

Pr[v ∈ Cj(t+ 1)|bitv(t+ 1) = True, xj(t), x(t)] = xj(t)/x(t) ,

since

Pr[v ∈ Cj(t+ 1)|bitv(t+ 1) = True, xj(t), x(t)]

= Pr[v ∈ Cj(t+ 1) ∧ bitv(t+ 1) = True|xj(t), x(t)]
Pr[bitv(t+ 1) = True|xj(t), x(t)]

=

(i)︷ ︸︸ ︷
xj(t)
n

(
n− x(t)

n

)
+

(ii)︷ ︸︸ ︷
xj(t)
n

x(t)
n︸ ︷︷ ︸

(iii)

+
(

1− x(t)
n

)
x(t)
n︸ ︷︷ ︸

(iv)

= xj(t)
x(t) ·

1− x(t)
n + 1

1 + 1− x(t)
n

.

In above equation, the probability for a node to have color Cj and the bit set
in round t+ 1 is computed as follows.
(i) is the probability that a node has color Cj and the bit set at time t and

selects a node without a bit set
(ii) is the probability that a node chooses another node which has color Cj

and the bit set
(iii) is the probability for choosing a node with a set bit
(iv) is the probability for choosing a node without the bit set which selects

another node with the bit set
Consequently, the number of nodes which have color Cj in the next round

has expected value µ = E[xj(t+ 1)|x(t+ 1), xj(t), x(t)] = xj(t) · x(t+ 1)/x(t).
We apply Chernoff bounds to xj(t+ 1) and obtain

Pr

[
|xj(t+ 1)− µ| > 3

√
logn
µ
· µ
∣∣∣∣∣xj(t), x(t), x(t+ 1)

]
≤ n−2 .

168

Assuming x(t) fulfills Lemma 70, we have [KSSV00]

x(t+ 1) = E[x(t+ 1)|x(t)] ·
(
1±O

(√
k logn/

√
n
))

,

and therefore we obtain the lemma.

Lemma 74. Let A be the dominant color of size a and B the second largest
color of size b. Let a′ and b′ be the number of nodes of colors A and B,
respectively, after the bit-propagation phase. Let T = 2(log k+log logn). Given
x(1) and assuming it is concentrated around the expected value, we have with
high probability after T bit-propagation rounds

a′ ≥ a2

x(1) ·
(

1−O
(
T ·
√
n logn
a

))

and

b′ ≤ b2

x(1) ·
(

1 + O
(
T ·
√
n logn
b

))
+ log2 n .

Furthermore, for any other color Cj of size cj it holds with high probability that

c′j ≤
c2
j

x(1) ·
(

1 + O
(
T ·
√
n logn
cj

))
+ k2 · log4 n .

Proof. Let ai = x1(i) be a sequence of random variables for the number of nodes
of color A which have their bit set in round i. In the following proof, whenever
we condition on aj or x(j) for any j, we assume that they are concentrated
around their mean according to Lemma 71, Lemma 72, and Lemma 73.
According to Lemma 73 we know that

E[ai+1|ai, x(i+ 1), x(i)] = x(i+ 1)
x(i) · ai .

Note that E[ai+1|ai] ≥ ai. Therefore we have

Pr

[
ai+1 <

x(i+ 1)
x(i) · ai ·

(
1− 3

√
logn
√
ai

)∣∣∣∣∣ai, x(i− 1), x(i)
]
≤ n−2 .

The total number of bits set in the round i+ 1, given the total number of
bits in round i, is independent of the color distribution among these nodes in
round i, that is, for any β ≤ γ it holds for any α that

Pr[x(i+ 1) = α|xj(i) = β, x(i) = γ] = Pr[x(i+ 1) = α|x(i) = γ] .

We therefore have for any τ > i

Pr

[
ai+1 <

x(i+ 1)
x(i) · ai ·

(
1− 3

√
logn
√
ai

)∣∣∣∣∣ai, x(1), . . . , x(τ)
]
≤ n−2 .

169

18 One Bit of Memory

The equation above means that the distribution of the colors among the nodes
with the bit set at time i + 1, given x(1) . . . x(i + 1), is independent of the
number of nodes with the bit set at times i+ 2, . . . , τ .
Recall that, given a1, ai = Ω(a1) with high probability and therefore we

have for given a1, ai, x(i− 1), x(i), and a constant ζ with high probability

ai+1 ≥
x(i+ 1)
x(i) · ai ·

(
1− ζ ·

√
logn
√
a1

)
. (18.1)

Define T = O(log (n/a) + log logn) such that x(T) = n with high proba-
bility according to [KSSV00]. We now show by induction that, given a1,
x(1), . . . , x(T), and a constant ζ,

aT ≥
x(T)
x(1) · a1 ·

(
1− ζ ·

√
logn
√
a1

)T
(18.2)

with high probability. The base case for round t = 1 obviously holds. For the
step from t to t+ 1 we use (18.1) as follows.

at+1
(18.1)
≥ x(t+ 1)

x(t) · at ·
(

1− ζ ·
√

logn
√
a1

)
IH
≥ x(t+ 1)

x(t) · x(t)
x(1) · a1 ·

(
1− ζ ·

√
logn
√
a1

)t
·
(

1− ζ ·
√

logn
√
a1

)

≥ x(t+ 1)
x(1) · a1 ·

(
1− ζ ·

√
logn
√
a1

)t+1

This concludes the induction. We apply the Bernoulli inequality to (18.2) and
obtain

aT ≥
x(T)
x(1) · a1 ·

(
1− ζ · T ·

√
logn

√
a1

)
. (18.3)

A similar upper bound can be computed for any large color. Let B = C2 be
the second largest color. For bi = x2(i) we obtain with high probability

bT ≤
x(T)
x(1) · b1 ·

(
1 + ζ · T ·

√
logn√
b1

)
.

In the following we analyze how the gap between A and B changes during
one phase. We use the result from Lemma 72 for a1 in (18.3) and obtain

a′ ≥ n

x(1) · a1 ·
(

1− ζ · T ·
√

logn
√
a1

)

≥ n

x(1) ·
a2

n
·
(

1− ζ · T ·
√

logn
√
a1

)
︸ ︷︷ ︸

(i)

·
(

1− 3
√

logn ·
√
n

a

)
︸ ︷︷ ︸

(ii)

,

170

where the second expression in parentheses, (ii), is asymptotically dominated
by the first one, (i). Therefore, there is a ζ ′ such that

a′ ≥ a2

x(1) ·
(

1− ζ ′ · T ·
√

logn
√
a1

)
. (18.4)

As before, we can apply a similar calculation for the upper bound of any color
B as long as b is large enough, that is, b ≥

√
n logn. We therefore obtain with

high probability

b′ ≤ b2

x(1) ·
(

1 + ζ ′ · T ·
√

logn√
b1

)
. (18.5)

Finally, the same calculation can be also applied to any other color Cj of size
cj . However, if cj is between

√
n/ logn and

√
n · logn, then we observe that

after the two-choices round we have at most O
(
log2 n

)
bits set for Cj . Since

in any step the color can increase by at most a factor of 2 ·
(
1 + o

(
1/ log2 n

))
with high probability, we have in the end at most O

(
k2 · log4 n

)
nodes of color

Cj . Since k ≤ nε, in the next two-choices phase this color will disappear with
high probability.
Taking all contributions into consideration, we observe that there always

exists a constant ζ ′ such that (18.4) and (18.5) are satisfied.

We are now ready to put all pieces together and prove our main theorem,
Theorem 62, which is restated as follows.
Theorem 62. Let G = Kn be the complete graph with n nodes. Let k = O(nε)
be the number of opinions for some small constant ε > 0. The plurality
consensus process OneBit defined in Algorithm 18.1 on G converges within

O((log(c1/(c1 − c2)) + log logn) · (log k + log logn))

time steps to A, with high probability, if c1 − c2 ≥ z ·
√
n log3 n for some

constant z.

Proof. Assume x(1) is given and concentrated around its expected value. In the
following proof, we assume that b ≥

√
n logn. Recall that in the statement of

Theorem 62 we assume a−b ≥ z ·
√
n log3 n. Let T = 2(log k+log logn). From

the bounds on a′ and b′ from Lemma 74 we obtain the following inequality,
which holds with high probability.

a′ − b′ ≥ a2 − b2

x(1) − ζ · T ·
√

logn
x(1) ·

(
a2
√
a1

+ b2√
b1

)

≥ a2 − b2

x(1) − 2 · ζ · T ·
√

logn
x(1) · a

2
√
a1

≥ a− b
x(1) ·

(
(a+ b)− 2 · ζ · T ·

√
logn

a− b
· a

2
√
a1

)

171

18 One Bit of Memory

(using a1 = a2/n · (1± o(1)) with high probability according to Lemma 72)

≥ a− b
x(1) ·

(
(a+ b)− 2 · ζ · T ·

√
logn · a2 ·

√
n

(a− b) · a · (1− o(1))

)

(using a− b ≥ z ·
√
n log3 n)

≥ a− b
x(1) ·

(
(a+ b)− 2 · ζ · a

z · (1− o(1))

)
Now if z is large enough, we obtain for a small positive constant ε = ε(z) that

a′ − b′ ≥ (a− b) ·
(
a · (1− ε) + b

x(1)

)
. (18.6)

Let δ > 0 be a constant. We distinguish the following two cases.

Case 1: a < (1 + δ)b. We combine (18.5) and (18.6) and obtain with high
probability

a′ − b′

b′
≥ (a− b) ·

(
a · (1− ε) + b

x(1)

)
· x(1)
b2 · (1 + o(1))

= a− b
b
·
(
a · (1− ε) + b

b · (1 + o(1))

)
≥ a− b

b
·
(

b · (2− ε)
b · (1 + o(1))

)
= a− b

b
·
(
1 + ε′

)
where ε′ > 0 is a positive constant. Let a(i) and b(i) denote the number of nodes
of color A and B, respectively, after i phases. After i = log1+ε′(a/(c1 − c2))
phases we have with high probability

a(i) − b(i)

b(i)
≥ a− b

b
·
(
1 + ε′

)log1+ε′
a
a−b

= a− b
b
· a

a− b
≥ 1 .

We therefore get after i phases that a(i) − b(i) ≥ b(i) and thus a(i)/b(i) ≥ 2.

Case 2: a ≥ (1 + δ)b. Considering the ratio between a′ and b′ based on
(18.4) and (18.5), we obtain a quadratic growth as follows.

a′

b′
≥

a2

x(1) ·
(

1− ζ · log
3
2 n√
a1

)
b2

x(1) ·
(

1 + ζ · log
3
2 n√
b1

) = a2

b2
· 1− o(1)

1 + o(1) ≥
a2

b2
· (1− o(1))

172

Note that if a < (1 + δ)b then after i = log1+ε′(a/(a − b)) phases we have
a(i)/b(i) ≥ 2 and the second case applies. After O(log logn) phases, every color
except for A drops below

√
n logn. As described in the proof of Lemma 74, all

other colors disappear in the next two-choices phase with high probability.

Room for Improvement. The bound on the plurality consensus time can
be further improved to O((log(c1/(c1 − c2)) + log logn) · log k), which is of
interest for cases where k = o(logn). This can be achieved by having shorter
Bit-Propagation sub-phases in which not all nodes but a large fraction of nodes
set their bit.

173

19
Asynchronous Protocol

In this chapter, we present our asynchronous process which is formally defined
in Algorithm 19.1. The algorithm is an adaption of OneBit to the asynchronous
setting. Recall that the key idea to the speed of OneBit is to pair a phase in
which all nodes execute the two-choice process with a phase in which opinions
are propagated quickly. This interweaving of the processes requires the nodes
to execute the phases simultaneously. While this is trivial in the synchronous
setting, it is impossible in the asynchronous setting. As already stated, the
numbers of activations of different nodes can differ by Θ(logn). Therefore, any
attempt to reach full synchronization is futile if one aims for a run time of
O(logn). To overcome this restriction, we relax the algorithm to the following
weaker notion of synchronicity. At any time we only require a 1− o(1) fraction
of the nodes to be almost synchronous. To cope with the influence of the
remaining nodes, we use a toolkit of gadgets which we will introduce later.
The resulting weak synchronicity allows us to reuse the high-level structure
of the analysis of OneBit, however still adding several technical challenges.
Recall that OneBit has one Two-Choices sub-phase and one Bit-Propagation
sub-phase which propagates the choices of the Two-Choices phase to almost all
nodes in the network. After executing both sub-phases the distance between A
and any opinion Cj 6= A increases quadratically. Our asynchronous algorithm
also achieves the same growth of A after each of O(log logn) phases. The
Bit-Propagation sub-phase is of length O(logn/ log logn), amounting to a total
run-time of O(logn), which incidentally is best possible. The reason for this is
that after o(logn) rounds, with high probability some nodes will have ticked
not even once. Although from a high level the asynchronous version looks very
similar to OneBit, we will see later that both implementation and analysis
differ greatly and are much more complicated, arguably making this one of the
main contributions of this work.
We proceed by analyzing Algorithm 19.1. Recall that in the sequential

asynchronous model we assume that a sequence of discrete time steps is given,

175

19 Asynchronous Protocol

where at each time step one node is chosen uniformly at random to perform its
tick. The main goal of Algorithm 19.1 is to increase the number of nodes of color
A to a level of a ≥ (1/2 + εPart 1) ·n. Once the execution of Algorithm 19.1 has
finished, the nodes execute the two-choices algorithm defined in Algorithm 17.1
in an asynchronous manner, after which A wins with high probability; we
analyze this asynchronous two-choices process in Section 19.5. For the analysis
of Algorithm 19.1, we will use the following notation and definitions.

Definition 23. Let c1 denote a sufficiently large positive constant. We refer
to a series of n consecutive time steps as a period, and we combine c1 ·
logn/ log logn periods to a phase. Let furthermore Tv(t) denote the random
variable for the number of ticks of node v during the first t · n time steps in the
sequential asynchronous model (note that t is not necessarily an integer). We
refer to Tv(t) as the real time of v. Additionally, let T ′v(t) be the time of v at
time step tn, which is at the beginning the same as Tv(t), but it may deviate
from this value during the execution of the algorithm (see shuffle gadget).

Intuitively, a period is the number of time steps during which each node ticks
once in expectation. It will prove convenient to regard a reference point as the
one instruction in the algorithm which would be executed in the corresponding
period if every node ticked exactly once in every period. Observe that at each
time step one node is chosen to tick independently and uniformly at random.
Thus Tv(τ) has a binomial distribution Tv(τ) ∼ B(τ ·n, 1/n) and E[Tv(τ)] = τ .

For the sake of increased readability, the algorithm specified in Algorithm 19.1
is split into multiple blocks which are defined separately in Algorithm 19.2
(Check-Synchronicity), Algorithm 19.3 (Shuffle Gadget), Algorithm 19.4 (Two-
Choices), and Algorithm 19.5 (Bit-Propagation). Whenever invoking one of
these blocks we pass on the current number of ticks, the node, and the number
of the first and last instruction belonging to that block. In the formal definition,
we specify what operations a node performs when selected at a time step to
perform its tick t. However, all blocks of instructions used in the algorithm
contain periods of ticks during which no instructions are given. We will refer to
sequences of sequential ticks without instructions as a do-nothing-block. Note
that in order to increase readability we do not specify these do-nothing-blocks
in the formal definitions of the algorithm.
In contrast to the formal definitions, it is more convenient and instructive

to represent the algorithm which is executed by each node in each phase in
a graphical way. The graphical representations are shown in Figure 19.1 for
the overview and in Figure 19.2, Figure 19.3, Figure 19.4, and Figure 19.5 for
the individual blocks. In these figures, the instructions are drawn similar to
music sheets on a line from left to right, starting with the first instruction at
the left endpoint. In the overview given in Figure 19.1, the blocks correspond
to multiple instructions specified in the corresponding algorithms. Based on
this graphical representation, we will say that a node V is left of a reference
point τ , if T ′v(τ) < τ and right of τ , if T ′v(τ) > τ .

176

Algorithm asynchronous(G, color : V → C)
let T = c1 · logn/ log logn;
at each node v do asynchronously
for phase s = 0 to c2 · log logn− 1
at each tick t
τtc1 ← s · T ;
τtc2 ← s · T + T/4;
τbp1 ← s · T + 2 · T/4;
τbp2 ← s · T + 3 · T/4;
τt ← (s+ 1) · T ;
if tick t ∈ [τtc1, τtc2] then

execute Two-Choices(t, v, τtc1, τtc2);
if tick t ∈ (τtc2, τbp1) then

execute Shuffle(t, v, τtc2 + 1, τbp1 − 1);
if tick t ∈ [τbp1, τbp2] then

execute Bit-Propagation(t, v, τbp1, τbp2);
if tick t ∈ (τbp2, τt) then

execute Shuffle(t, v, τbp2+1, τt − 1);

Algorithm 19.1: asynchronous voting protocol AsyncPlurality. To reach plurality
consensus, we first execute this algorithm before executing Algorithm 17.1. The constants
c1, c2 are chosen large enough. For any time step not specified, the algorithm does
nothing.

sg sg

repeat c2 log log n times

τtc1 τtc2 τbp1 τbp2 τt

tc bp

Figure 19.1: graphical representation of Algorithm 19.1

We commence the analysis with the observation that throughout the entire
process there do not exist nodes which perform more than O(logn) ticks, with
high probability.

Observation 75. Let T denote the total number of time steps until all nodes
have completed the execution of Algorithm 19.1. With high probability, we have
T ≤ 3/2 · c1 · c2 · n · logn. Furthermore, with high probability we have for some
constant c

max
v∈V
{Tv(3/2 · c1 · c2 · logn)} ≤ 2c · logn

and

max
v∈V

{
T ′v(3/2 · c1 · c2 · logn)

}
≤ 3c · logn .

177

19 Asynchronous Protocol

Observe that according to Algorithm 19.1 a node completes the execution
of the algorithm when T ′v reaches c1 · c2 · logn. The proof follows, if c1 · c2
is large enough, from an application of Chernoff bounds to Tv(T) and from
Observation 79 for an arbitrary but fixed node v and union bound over all
nodes.

In the following, we implicitly consider a process P ′ coupled to the original
process P . While in the original process P it is possible, albeit extremely
unlikely, for a single node to tick more than 2c1 · c2 · logn times during T time
steps, we restrict this behavior in the coupled process P ′. That is, in P ′ we
assume that when a node reaches this limit and is still selected to tick in a
subsequent time step, nothing at all happens in that time step. Note that from
Observation 75 it follows that with high probability the processes P and P ′ do
not deviate at all.

We proceed by showing that most nodes are almost synchronous at carefully
chosen reference points. Intuitively, a huge fraction of nodes has a number
of ticks which is concentrated around the expected value and therefore most
nodes will execute instructions which are close together. We formalize this
concept in Lemma 76 which is based on the following definition.

Definition 24. Let ∆ = Θ(logn/ log logn). We say a node is ∆-close to a
reference point τ for τ ≤ c·logn w.r.t. Tv (T ′v) if |Tv(τ)− τ | ≤ ∆ (|T ′v(τ)− τ | ≤
∆). If we say a node is ∆-close without specifying a reference point, we mean
that it is ∆-close to the expected number of ticks. If it is clear from the context
whether Tv or T ′v is meant, then this will not be specified.

Lemma 76. Let ∆ = Θ(logn/ log logn), let τ be a reference point with τ ≤
c1 · c2 · logn, and let Y (τ) be the random variable for the number of nodes
which are ∆-close to τ w.r.t. Tv. We have

Y (τ) ≥ n ·
(
1− exp

(
−Θ

(
logn/ log2 logn

)))
.

Proof. Let Ev(τ) be the event that a node v is ∆-close to τ , that is,

Ev(τ) =
[
τ −Θ(logn/ log logn) ≤ Tv(τ) ≤ τ + Θ(logn/ log logn)

]
.

We apply Chernoff bounds to Tv(t) and obtain

Pr[Ev(τ)] ≥ 1− exp
(
−Θ

(logn
log logn · s

))
, (19.1)

where s is the current phase of node v with s ≤ log logn. Let in the following
Yv(τ) be an indicator random variable for a node v and a reference point τ
defined as

Yv(τ) =

1, if Ev(τ) ,

0, otherwise.

Summing up over all nodes gives us Y (τ) =
∑
v∈V Yv(τ). By linearity of

expectation, we have E[Y (τ)] ≥ n · (1− exp(−Θ(logn/(log logn · s)))). Note

178

that the random variables Tv(τ), and therefore also the random variables
Yv(τ), are not independent. We thus consider the process of uncovering Yv(τ)
one node after the other in order to obtain the Doob martingale of Y (τ) as
follows. We define the sequence Zj(τ) as Zj(τ) = E[Y (τ)|Tj(τ), . . . , T1(τ)]
with Z0(τ) = E[Y (τ)]. We have

E[Zj(τ)|Tj−1(τ), . . . , T1(τ)] = E[E[Y(τ)|Tj(τ), . . . , T1(τ)]|Tj−1(τ), . . . , T1(τ)]

which, applying the tower property, gives us that

E[Zj(τ)|Tj−1(τ), . . . , T1(τ)] = E[Y (τ)|Tj−1(τ), . . . , T1(τ)] = Zj−1(τ) .

Therefore Zj(τ) is indeed the Doob martingale of Y (τ).
According to Observation 75 each node ticks at most 2c · logn times, that is,
|Tj+1(τ)− Tj(τ)| ≤ 2c · logn. This holds with high probability in the original
process P and with probability 1 in the coupled process P ′. Since at most
2c · logn of the random variables Yj+1(τ), . . . , Yn(τ) differ, we have

|Zj+1(τ)− Zj(τ)| =
∣∣E[Yn(τ) + · · ·+ Y1(τ)|Tj+1(τ), . . . , T1(τ)]
− E[Yn(τ) + · · ·+ Y1(τ)|Tj(τ), . . . , T1(τ)]

∣∣ ≤ 2c · logn .

Applying the Azuma-Hoeffding bound to Y (τ) =
∑
v∈V Yv(τ) gives us

Pr

[
|Y (τ)− E[Y (τ)]| ≥

√
c3 · n · log3 n

]
≤ exp

(
− c3 · n · log3 n

2 ·
∑n
j=1(2c · logn)2

)
,

which for sufficiently large c yields |Y (τ)− E[Y (τ)]| ≤
√
c3 · n · log3 n with

high probability. We finally conclude that, with high probability, at least
n ·
(
1− exp

(
−Θ

(
logn/ log2 logn

)))
nodes are synchronous up to a deviation

of at most ∆ = Θ(logn/ log logn) ticks from the expected number of ticks at
the given reference point τ .

Corollary 77. Let ∆ = Θ(logn/ log logn). Throughout the entire execution
of Algorithm 19.1, at least n ·

(
1− exp

(
−Θ

(
logn/ log2 logn

)))
nodes are

∆-close w.r.t. Tv with high probability.

Proof. Let ∆′ = ∆/2, and let τi be a sequence of reference points with τi = i·∆′.
Observe that according to Observation 75 at most O(log logn) reference points
suffice to cover the entire execution of Algorithm 19.1. We individually apply
Lemma 76 with parameter ∆′ to each reference point τi. From a union
bound over all reference points we obtain that with high probability at most
n ·Θ

(
exp

(
− logn/ log2 logn

))
· log logn nodes are not ∆′-close to all reference

points. Since the distance between two reference points is at most ∆/2, at least
n ·
(
1− exp

(
−Θ

(
logn/ log2 logn

)))
nodes are ∆-close at any time step.

179

19 Asynchronous Protocol

Notation. We will use ζ = ζ(n) = exp
(
−Θ

(
logn/ log2 logn

))
in the remain-

der of the chapter.

From Corollary 77 we obtain that with high probability asymptotically
almost all nodes are always close to the expected number of ticks. We will refer
to those nodes which are ∆-close throughout the execution of the algorithm
as the bulk. In the following, we seek to reduce the impact of those nodes
whose current instruction is far off the reference point. This is ensured by the
following two means. First, we require for the Two-Choices sub-phase and the
Bit-Propagation that each communication between two nodes happens only
in a so-called communication window of the calling node’s current instruction.
This communication window is defined as follows. We assume that whenever
a node contacts another node, the current number of ticks is requested and
transmitted as well. If the caller receives a number of ticks from the callee
which lies outside of the communication window belonging to the caller’s
current instruction defined in the algorithm, the communication is regarded
as failed. The communication windows for the Two-Choices sub-phase and
the Bit-Propagation sub-phase are formally specified in Algorithm 19.1. They
are furthermore sketched in the graphical representation of the algorithm
in Figure 19.1 as dotted lines below the instructions. In addition to the
communication window, we use a so-called Check-Synchronicity procedure.
This procedure of length Θ(logn/ log logn) works as follows.

Algorithm CheckSynchronicity(tick t, node v, τcs1, τcs2)
if t ∈ [τcs1 + 2∆, τcs2 − 2∆− 1] then

let u ∈ N(v) uniformly at random;
if Tv ∈ [τcs1 + ∆, τcs2 −∆− 1] then

syncv ← syncv + 1 ;

if t = τcs2 then
if syncv ≤ (τcs2 − τcs1 − 4∆)/2 then

deadv ← True;
syncv ← 0;

Algorithm 19.2: the Check-Synchronicity procedure. Recall that t is the working-time
(T ′v) and Tv is the real-time.

τcs1 τcs2

∆ ∆ ∆ ∆

sample

valid decide

Figure 19.2: graphical representation of Algorithm 19.2, the Check-Synchronicity procedure

Assume the Check-Synchronicity procedure consists of instructions τcs1

180

19.1 Analysis of the Check-Synchronicity procedure

to τcs2. At each tick ∈ [τcs1 + 2∆, τcs2 − 2∆ − 1] of some node v, where
t corresponds to T ′v each node v opens a connection to a randomly chosen
neighbor and queries that neighbor’s current number of ticks. If this number
is in [τcs1 + ∆, τcs2 − ∆ − 1], a counter variable syncv is incremented. At
the very last tick, τcs2, each node performs the following check. If more
than half of the sampled neighbors are in the proper interval and therefore
syncv > (τcs2 − τcs1 − 4∆)/2, the node remains alive and resets its counter
syncv to zero. Otherwise the node failed the synchronicity check and marks
itself as dead according to the following definition.

Definition 25 (Dead Node). A dead node is a node which did not survive a
Check-Synchronicity procedure. Formally, each node v has a Boolean variable
deadv indicating whether v is dead or alive. Dead nodes do not participate in
the algorithm any more prior to the final two-choices phase. When they are
scheduled to tick, they do nothing in that time step. When contacted by other
nodes, they do supply the information that they are dead. Unless explicitly
stated otherwise, an alive node which contacts a dead node does not perform
any action in that tick. Any node, dead or alive, however, always counts its
number of ticks, and communicates this number when asked for it.

Definition 26 (Alive Nodes). We define L(τ) = {v : deadv(τ) = False} as the
set of alive nodes at a given reference point τ .

Note that a dead node does not become alive ever again throughout the
execution of Algorithm 19.1. However, the dead nodes do participate in the
final phase, which consists of only two-choices steps. For readability reasons
we do not explicitly consider the aliveness of nodes in the formal description of
the asynchronous algorithm in Algorithm 19.1.

19.1 Analysis of the Check-Synchronicity procedure

Based on above description of the Check-Synchronicity procedure and the
definition of dead nodes, we state and prove the following lemma for an
arbitrary but fixed Check-Synchronicity block.

Lemma 78. Consider an arbitrary but fixed Check-Synchronicity block and
assume that node v goes through the Check-Synchronicity procedure between
time steps τ1n and τ2n. Let v be an arbitrary but fixed node which is alive at
time step τ1n. Let furthermore deadv(t) denote the value of the variable dead
of node v at time step tn. The following statements hold with high probability.

1. If v is ∆-close during [τ1n, τ2n] w.r.t. T ′v, then deadv(τ2) = False.
2. If T ′v(τ2) < τ1 − τcs2 + τcs1, then deadv(τ2) = True.
3. If T ′v(τ1) > τ2 + τcs2 − τcs1, then deadv(τ2) = True.

Proof of Lemma 78.1. From Corollary 77 we obtain that with high probability
the set S of nodes u which are ∆-close w.r.t. Tu at all time steps t ∈ [τ1n, τ2n]

181

19 Asynchronous Protocol

has size |S| ≥ (1− ζ) · n. Therefore the probability that the node v samples
another node which is in the same Check-Synchronicity procedure is at least
1−ζ. Since the sampling is done independently, the claim follows from Chernoff
bounds on the number of successful sampling ticks.

Proof of Lemma 78.2. Again, we obtain from Corollary 77 that at least (1−ζ)·n
nodes u are ∆-close w.r.t. Tu to τ2, with high probability, when v reaches
T ′v(τ2) = τcs2. We know that at that time T ′v(τ2) < τ1 − τcs2 + τcs1, which
implies that τ1 > τcs2 + (τcs2 − τcs1). Since (1− ζ) · n nodes u were ∆-close
w.r.t. Tu to τ1 when v entered the Check-Synchronicity procedure, we conclude
that at most ζ ·n nodes could have some of their ticks in [T ′v(τ1), T ′v(τ2)] while v
went through the Check-Synchronicity procedure. As before, the claim follows
from Chernoff bounds on the number of successful sampling ticks.

Proof of Lemma 78.3. As before, at least (1−ζ)·n nodes u are ∆-close w.r.t Tu
to a reference point which is at most τ1, with high probability. Using similar
arguments as before, we conclude that the node v went through the entire
Check-Synchronicity procedure while at most ζ · n nodes had some of their
ticks in [T ′v(τ1), T ′v(τ2)]. Once again, the claim follows from Chernoff bounds
on the number of successful sampling ticks.

In the remainder we assume that the claims of Lemma 78 hold with proba-
bility 1. Similar to the maximum number of ticks, see Observation 75, we can
define a coupled process P ′ in which the claims hold with probability 1. With
high probability, the coupled process P ′ does not deviate from the original
process P .

Observe that the Check-Synchronicity procedures along with the communi-
cation windows ensure that only ∆-close nodes participate in the algorithm.
However, we do not yet have any information about the nodes which die in
the Check-Synchronicity procedure. In order to establish tight bounds on the
number of nodes of a given color which do not survive a Check-Synchronicity
block, we need to argue a weak independence between the number of ticks and
the color of a node. We therefore introduce the so-called Shuffle Gadget. The
Shuffle Gadget is a block consisting of Θ(logn/ log logn) instructions. Assume
these instructions are defined between τsg1 to τsg2. The Shuffle Gadget ensures
that the order in which nodes perform tick τsg2 among the nodes which are alive
at this tick is well distributed. The Shuffle Gadget is sketched in Figure 19.3.
It is formally defined as follows.

19.2 Analysis of the Shuffle Gadget

A node’s real time, denoted as ticks in Algorithm 19.1, is the time without
any adjustments, that is, the number of ticks it has observed so far. We now
describe a gadget which assigns to each node a so-called working time, that is,

182

19.2 Analysis of the Shuffle Gadget

Algorithm Shuffle(tick t, node v, τsg1, τsg2)
jumpedv ← False;
mediansv ← ∅;
τi ← τbp1 + i · (τbp2 − τbp1)/10;
τSH′ ← τSH + c3 · log2 logn;
if tick t ∈ [τ0, τ1] then

execute CheckSynchronicity(t, v, τ0, τ1);
if tick t ∈ [τ2, τ3] then

execute CheckSynchronicity(t, v, τ2, τ3);
if tick t ∈ (τSH, τSH′) and jumpedv = False then

let u ∈ N(v) uniformly at random;
increase all values in mediansv by 1;
mediansv ← mediansv ∪ {Tu};

if tick t = τSH′ and jumpedv = False then
t← median(mediansv) ;
if tick t > median(mediansv) then

deadv = True ;
jumpedv = True;

Algorithm 19.3: the Shuffle Gadget. Recall that t is the working-time (T ′v) and Tv is
the real-time.

τsh

τsh1 τsh2

cs

Jump Step

cs

τsh∗

Median

τsh'

Figure 19.3: graphical representation of Algorithm 19.3, the Shuffle Gadget. As usual, the
instructions which do not belong either to a Check-Synchronicity procedure or the jump
step form do-nothing blocks. Observe, however, that in the Θ(logn/ log logn) ticks which
immediately follow the jump step at tick τsg nodes perform so-called forward-checks.

T ′v for a node v and denoted as t in Algorithm 19.1, in order to weakly decouple
times and colors. The gadget consists of two Check-Synchronicity procedure
calls, each followed by a do-nothing-block. Then, during the next c log2 logn
ticks, where c is a sufficiently large constant, the node samples a new node, and
it collects the real times (that is, Tu for a node u) it has sampled during these
time steps. Note that at each of these c log2 logn ticks, the node increments
all real times sampled so far by 1. The median of these values will then be v’s
working time for the next (two-choices or bit-propagation) sub-phase. That is,
the node acts and checks synchronicity according to this time, plus the number
of ticks the node observed since this working time was set.
If the working time assigned to the node is larger than τsh∗ , then the node

dies. Notice that each node gets the working time assigned exactly once while

183

19 Asynchronous Protocol

it executes the shuffle gadget. Once the working time is set, that is, time step
τsh has been reached once, see Figure 19.3, it will not be reset within this
gadget anymore, even if the node jumps back to some time preceding τsh. As
we show in Lemma 80, most nodes are assigned a working time which lies
within the two do-nothing-blocks directly preceding and following τsh.

We mention here that a node may have entered the shuffle gadget with a
previous working time which is different from the working time sampled in this
gadget. If the node goes through a Check-Synchronicity procedure call in this
gadget, then this is done according to this old working time. If a node dies in
one Check-Synchronicity procedure call, then it will remain dead during the
whole execution of the algorithm.

Note that in Observation 75 we considered the number of ticks and the time
a node can have. Since the shuffle gadget can reset the time of the nodes, we
need the following observation.

Observation 79. With high probability, the time of a node v is reset in a
shuffle gadget by at most O(logn/ log logn). The deviation between Tv(t) and
T ′v(t) is for every node v at any time step t < 3/2c1c2 logn at most c logn/4,
with high probability, if c1 is large enough.

This follows from the fact that in each gadget, a node can reset its working
time to the median of the sampled real times. However, if the node is alive, then
it must have survived the second Check-Synchronicity procedure in this gadget,
meaning that most of the nodes have passed the first Check-Synchronicity
procedure of this gadget at the time the working time is assigned. Furthermore,
n ·
(
1− exp

(
−Ω

(
logn/ log2 logn

)))
nodes are ∆-close w.r.t. their real times

during the whole execution of the algorithm, with high probability. Thus,
the node will not jump back more than O(logn/ log logn) steps in a shuffle
gadget. Furthermore, the node dies if the working time is set to some value
larger than τsh∗ . This implies that the node dies if it jumps forward more than
O(logn/ log logn) ticks. Since there are O(log logn) shuffle gadgets, the claim
follows.
Next we show that there will be sufficiently many alive nodes during the

execution of the algorithm. This generalizes Corollary 77 to our setting in
which the working-time of nodes are modified.

Lemma 80. There are at least n ·
(
1− exp

(
−Ω

(
logn/ log2 logn

)))
nodes

alive during the whole execution of the algorithm, with high probability.

Proof. In this proof we assume for simplicity that the c′′ log2 logn sampled
nodes are taken in one single step. First, we show that the median of the
sampled times is close to the average of all (real) times, with high proba-
bility. We know that there are n ·

(
1− exp

(
−Ω

(
logn/ log2 logn

)))
nodes

u which are with high probability ∆-close w.r.t. Tu during the whole ex-
ecution of the algorithm, see also Lemma 76. More precisely, we know

184

19.2 Analysis of the Shuffle Gadget

that for n ·
(
1− exp

(
−Ω

(
logn/ log2 logn

)))
nodes, if Xτ

v is the random
variable denoting the number of ticks the node v had until period τ , then
|Xτ

v − τ | ≤ c′ logn/ log logn for some constant c′. Thus, if c′′ is large enough,
by Chernoff bounds we conclude that more than 9c′′ log2 logn/10 nodes are
chosen from the set of nodes with this property, with high probability. Then,
with high probability the median will be the real time of such a good node,
that is, a node from the set of nodes being close to the average of all ticks.

Let us consider a fixed execution of a shuffle gadget, and let v1, . . . , vm be the
nodes which are alive according to their real times during the whole execution of
the algorithm. Furthermore, letXτ

i be the random variable counting the number
of ticks of node vi within the first τ periods. As described above, we know that
for all these nodes, |Xτ

i − τ | < c′ logn/ log logn. Now let a node Xτ
j be the

median taken by vi in some period τ . Then |Xτ
i −Xτ

j | < 2c′ logn/ log logn.
Furthermore, the time of node vi, after it has taken Xτ

j , in some period τ ′ is
Xτ
j + Xτ ′

i − Xτ
i . However, we know that |Xτ ′

i − τ ′| < c′ logn/ log logn and
according to the arguments above,

|Xτ
j +Xτ ′

i −Xτ
i − τ ′| < 3c′ logn/ log logn.

Due to Lemma 78, Setting the length of the Check-Synchronicity procedure
accordingly, all nodes vi choosing some median Xτ

j with i ∈ {1, . . . , k} will be
alive during the sub-phase following the shuffle gadget. Taking into account
that k = n ·

(
1− exp

(
−Ω

(
logn/ log2 logn

)))
, the lemma follows.

Next we show that any node which survives the shuffle gadget, will die
in the next (two choices or bit propagation) sub-phase with probability only
exp(−Ω(logn/ log logn)).

Lemma 81. A node which survives the shuffle gadget also survives the
following sub-phase (and the following shuffle gadget) with probability
1 − exp(−Ω(logn/ log logn)). Such a node v is 3c′ logn/ log logn-close
w.r.t. T ′v during the sub-phase following the current shuffle gadget (and during
the next shuffle gadget) with probability 1− exp(−Ω(logn/ log logn)).

Proof. Let v be a node that had assigned to it some time Xv in the shuffle
gadget. Assume that this value was assigned to v in period τ . Then we
have |Xv − τ | ≤ c′ logn/ log logn. Let us consider period c′′ logn/ log logn
after that point in time. The probability that this node is chosen fewer than
(or more than) (c′′ − 3c′) logn/ log logn ((c′′ + 3c′) logn/ log logn) times for
communication by this time is exp(−Ω(logn/ log logn)). Setting the length of
the Check-Synchronicity procedure accordingly, we obtain the lemma.

In the next lemma we consider each color separately.

Lemma 82. For an opinion i, let Ci(τ1) be the set of opinions entering a fixed
sub-phase. Then, |Ci(τ1)|(1− exp(−Ω(logn/ log logn)))−O(

√
n logn) nodes

185

19 Asynchronous Protocol

v from this set will always satisfy |Xτ
v − τ | ≤ 3c′ logn/ log logn for any period

τ during this sub-phase (as well as in the following shuffle gadget), with high
probability.

Proof. We know that with high probability no node will be chosen more
than O(logn) times within a sub-phase, that is, in O(logn/ log logn) periods.
We divide the set of nodes Ci(τ1) into sets of size

√
n. Let v1, . . . , v√n be

the nodes of such a set and assume for simplicity that
√
n divides |Ci(τ1)|.

Consider the following process. At a time step j within some period we
choose v1 to tick with probability 1/n. If v1 is not selected, then we choose
v2 with probability 1/(n − 1), and so on. If v1, . . . , vq all decided not to
communicate, then we choose vq+1 with probability 1/(n − q). Thus, for a
node vq+1 it holds that it communicates in step j with probability at most
1/(n− q) ≤ 1/(n−

√
n), regardless of the communications of the other nodes.

That is, if some node vr with r ≤ q is chosen to tick at this step, then
vq+1 is selected with probability 0 (no two nodes can be selected), and if
there is no vr with r ≤ q selected, then vq+1 is chosen with probability
1/(n − q). Hence, the probability that a node is chosen from this set to
tick more than τ + 3c′ logn/ log logn times within O(logn/ log logn) periods
is still exp(−Ω(logn/ log logn)), see also Lemma 81. Since the upper bound
1/(n−

√
n) is independent of the behavior of the other nodes, we apply Chernoff

bounds and obtain that at most
√
n/ exp(Ω(logn/ log logn)) nodes are chosen

for communication more than τ + 3c′ logn/ log logn times each, with high
probability.
On the other hand, each node communicates at most logn times within a

period, thus there are at least n−
√
n logn steps in which vq communicates

with probability at least 1/n. Similar arguments as above imply that at most√
n/ exp(Ω(logn/ log logn)) nodes are chosen for communication fewer than

τ −3c′ logn/ log logn times, with high probability. Putting these together, and
applying a union bound over all sets of size

√
n of a certain opinion i and over

all periods of this sub-phase, we obtain the lemma.

19.3 Analysis of the Two-Choices sub-phase

We consider an arbitrary but fixed Two-Choices sub-phase which consists of
instructions τtc1 to τtc2. As in Algorithm 19.4, we define τi for that Two-
Choices sub-phase as τtc1 + i · (τtc2 − τtc1)/10. The two-choice sampling step
occurs at instruction τtc = τ5 and the communication window [ω1, ω2] is defined
as [ω1, ω2] = [τ1, τ10 − 2]. We commence the analysis of the Two-Choices sub-
phase with the following observation, which also applies to the Bit-Propagation
sub-phase.

Observation 83. Let v ∈ L(τtc2) be a node which is alive at the end of
the Two-Choices sub-phase and let θ be the time step when v performs the
Two-Choices sampling step at tick τtc. Furthermore, let S be the set of nodes

186

19.3 Analysis of the Two-Choices sub-phase

Algorithm Two-Choices (tick t, node v, τtc1, τtc2)
τi ← τtc1 + i · (τtc2 − τtc1)/10;
[ω1, ω2]← [τ1, τ10 − 2];
if tick t ∈ [τ0, τ1] then

execute CheckSynchronicity(t, v, τ0, τ1);
if tick t ∈ [τ2, τ3] then

execute CheckSynchronicity(t, v, τ2, τ3);
if tick t = τ5 then

let u1, u2 ∈ N(v) uniformly at random;
if color(u1) = color(u2) and u1, u2 in [ω1, ω2] then

intColor(v) ← color(u1);
else

intColor(v) ← Null;

if tick t ∈ [τ7, τ8] then
execute CheckSynchronicity(t, v, τ7, τ8);

if tick t ∈ [τ9, τ10 − 1] then
execute CheckSynchronicity(t, v, τ9, τ10 − 1);

if tick t = τtc2 then
if intColor(v) 6= Null then

color(v) ← intColor(v);
bit(v) ← True;

else
bit(v) ← False;

Algorithm 19.4: Two-Choices sub-phase

τtc1 τtc2
τtc

Sampling

cs cs cs cs
τ ′′τ ′

ω1 ω2

Figure 19.4: graphical representation of Algorithm 19.4, the Two-Choices sub-phase. The
dotted line depicts the communication window. The reference points τ ′ and τ ′′ are used in
the analysis.

which are alive and within the communication window for that Two-Choices
sampling step at time step θ. Finally, let Cj(τtc1) denote the set of nodes which
are alive and have color Cj at their tick τtc1. With high probability, we have
for a color Cj

|{u ∈ S : color(u) = Cj}| ≥

|Cj(τtc1)| ·
(

1− exp
(
−Ω

(logn
log logn

)))
−
√
n · logn .

187

19 Asynchronous Protocol

Proof. Lemma 82 implies that from the set of nodes Cj(τtc1) at least
|Cj(τtc1)|(1 − exp(−Ω(logn/ log logn))) −

√
n logn have the property that

with high probability their tick(s) in some period τ differ from τ by at most
3c′ logn/ log logn, that is, are concentrated (c′ is the constant defined in
Lemma 82). We refer to them as Ccj (τtc1). Thus, at time step θ, v has already
passed τ3 (since τtc>τ3), and since v is alive most nodes must have been in
the range [τ2, τ3] when v had its tick τ3, with high probability. This implies
that all nodes of Ccj (τtc1) have already passed time step τ ′. Also, using similar
arguments we conclude that with high probability v can only survive the
Check-Synchronicity procedure starting with τ7 if most nodes have not reached
τ8 when v executes the two-choices protocol. Hence, with high probability no
node of Ccj (τtc1) has reached τ ′′ by step θ. The statement of the observation
follows then from the result of Lemma 82 w.r.t. the size of Ccj (τtc1).

For any color Cj let X̃j(τtc) denote the set of alive nodes which suc-
ceeded in the Two-Choices sampling step at tick τtc and set their in-
termediate color intColorv(τtc) in step τtc to Cj , that is, X̃j(τtc) =
{v ∈ L(τtc1) : intColorv(τtc) = Cj}. Furthermore, let X̃(τtc) denote the
set of nodes which have their intermediate color set after tick τtc, that is,
X̃(τtc) =

⋃
Cj X̃j(τtc).

The following lemma is the asynchronous counterpart to Lemma 72. It
establishes that the number of nodes which pick up a bit for color Cj is with
high probability concentrated around the expectation. This provides the basis
for the quadratic growth of the color ratios during the phase.
Lemma 84. Consider an arbitrary but fixed Two-Choices sub-phase with two-
choice sampling step at tick τtc. Among the nodes which survive the final
Check-Synchronicity procedure call at the end of the Two-Choices sub-phase we
have∣∣∣X̃j(τtc2)

∣∣∣ = |L(τtc2)| · |{v ∈ L(τtc1) : v ∈ Cj(τtc1)}|2

n2 · (1± o(1))±O
(
log2 n

)
with high probability. Furthermore, in some period τ in the Two-Choices
sub-phase or in the following shuffle gadget we have∣∣∣∣{v ∈ X̃j(τtc2) | |T ′v(τ)− τ | ≤ 3c′ logn

log logn

}∣∣∣∣
=|L(τtc2)| · |{v ∈ L(τtc1) : v ∈ Cj(τtc1)}|2

n2 · (1± o(1)) + O
(
log2 n

)
.

Proof. According to Observation 83 each node which survives all Check-
Synchronicity procedure calls in the Two-Choices sub-phase sets its in-
termediate color to Cj with probability at least (Ccj/n)2 and at most(
|Cj(τtc1)|/n ·

(
1− exp

(
−Ω

(
logn/ log2 logn

))))2
, independently. According

to Lemma 82

|Ccj | ≥ |Cj(τtc1)| ·
(

1− exp
(
−Ω

(logn
log logn

)))
−
√
n · logn .

188

19.4 Analysis of the Bit-Propagation sub-phase

By applying Chernoff bounds, we obtain the lemma.

From Lemma 84 and Lemma 82 we obtain the following corollary.

Corollary 85. Let a Bit-Propagation sub-phase follow the Two-Choices sub-
phase. Then,

|L(τtc2)| · |{v ∈ L(τtc1) : v ∈ Cj(τtc1)}|2

n2 · (1± o(1)) + O
(
log2 n

)
nodes have intermediate color Cj at the end of the Two-Choices sub-phase and
are ∆-close during the whole Bit-Propagation sub-phase as well as during the
following shuffle gadget,with high probability.

19.4 Analysis of the Bit-Propagation sub-phase

Algorithm Bit-Propagation(tick t, node v, τbp1, τbp2)
τi ← τbp1 + i · (τbp2 − τbp1)/10;
[ω1, ω2]← [τ1, τ10 − 2];
if tick t ∈ [τ0, τ1] then

execute CheckSynchronicity(t, v, τ0, τ1);
if tick t ∈ [τ2, τ3] then

execute CheckSynchronicity(t, v, τ2, τ3);
if tick t ∈ [τ3 + 1, τ7 − 1] then

if bit(v) = False then
let u ∈ N(v) uniformly at random;
if bit(u) = True and u in [ω1, ω2] then

bit(v)← True;
color(v)← color(u);

if tick t ∈ [τ7, τ8] then
execute CheckSynchronicity(t, v, τ7, τ8);

if tick t ∈ [τ9, τ10] then
execute CheckSynchronicity(t, v, τ9, τ10);

Algorithm 19.5: Bit-Propagation sub-phase

τbp1 τbp2

Bit Propagation

cscs cscs

ω1 ω2

τ3 τ7τ5

Figure 19.5: graphical representation of Algorithm 19.5, the Bit-Propagation sub-phase.
The dotted line depicts the communication window.

189

19 Asynchronous Protocol

In the following, we observe that the behavior of the asynchronous system
during the bit-propagation sub-phase can be modeled by a generalized version
of the so-called Pólya urn process. In the original urn model [JK77], we are
given an urn containing marbles of two colors. In every step, one marble is
drawn uniformly at random from the urn. Its color is observed, the marble is
returned to the urn and one more marble of the same color is added. For any
given color, the ratio of marbles with that given color over the total number of
marbles is a martingale.
In the generalized version, we allow that in addition to the original model

marbles of a given color can be added or removed at fixed time steps. Intuitively,
the generalized urn process corresponds to the bit-propagation sub-phase, where
at fixed time steps slow nodes enter the communication window and fast nodes
prematurely exit the communication window. Since we perform a worst-case
analysis, we assume that no additional black marbles are added nor white
marbles removed. The generalized urn process therefore runs in discrete time
steps where in each step either a black marble is removed, a white marble
is added, or a marble is added with a random color chosen according to the
current color distribution within the urn. Formally, the generalized urn process
is defined as follows.

Definition 27 (Generalized Pólya Urn Process). Let Pólya(x, y, S, T) with
x, y ≥ 0, S, T ⊂ N, and S ∩ T = ∅ be the following urn process. At the
beginning there are x black marbles and y white marbles in the urn. For every
time step t let x(t) and y(t) be the number of black and white marbles in the
urn, respectively. In every time step t the process does the following.
• If t ∈ S, remove a black marble.
• If t ∈ T , add a white marble.
• If t /∈ S ∪ T , with probability x(t)/(x(t) + y(t)) add a black marble and
with the remaining probability y(t)/(x(t) + y(t)) add a white marble.

Since the generalized Pólya urn process corresponds to the bit-propagation
sub-phase, we show in the following lemma how to majorize the generalized
process by the original Pólya urn process which we can analyze by means of
martingale techniques. Observe that the generalized Pólya urn process with
parameters S = T = ∅ describes precisely the original Pólya urn process.

Lemma 86. Let x, y ∈ N, S, T ⊂ N and |S| ≤ x. Let Fx(t) be the fraction of
black marbles and Fy(t) the fraction of white marbles in Pólya(x, y, S, T) at
time step t and let furthermore F ′x(t) be the fraction of black marbles and F ′y(t)
the fraction of white marbles in Pólya(x− |S|, y + |T |, ∅, ∅). We can couple the
generalized Pólya urn process with the original Pólya urn process such that

F ′x(t) � Fx(t+ |S|+ |T |) and F ′y(t) � Fy(t+ |S|+ |T |) ,

where the operators � and � denote stochastic minorization and majorization,
respectively.

190

19.4 Analysis of the Bit-Propagation sub-phase

Proof. The proof follows from an induction on the elements of S ∪ T . We
will show that we can couple the generalized Pólya urn process with another
generalized Pólya urn process where each element of S and T has been moved
to the first |S|+ |T | steps such that S ∪T = {1, 2, . . . , |S|+ |T |}. As induction
step, we will show that we maintain a majorization with each move.

Let zi be the i-th largest element of S ∪ T and let z be the smallest element
of S ∪ T for which z > zi, that is, z is the first element which can be moved
to an earlier step. If z ∈ S, we define S′ = S ∪ {z − 1} \ {z} and T ′ = T .
Otherwise, if z ∈ T , we define S′ = S and T ′ = T ∪ {z − 1} \ {z}.
For the induction, let F̂x(t) denote the fraction of black marbles and F̂y(t)

the fraction of white marbles in Pólya(x, y, S, T). Let analogously F̂ ′x(t) denote
the fraction of black marbles and F̂ ′y(t) the fraction of white marbles in
Pólya(x, y, S′, T ′). We can couple Pólya(x, y, S′, T ′) with Pólya(x, y, S, T) such
that the two processes do not deviate up to step z − 2. The following two
steps, z − 1 and z, consist of removing a black marble in one step and adding
a marble with color chosen according to the urn model in the other step. Let
E denote the event that we sample and add a black marble in step z − 1
in Pólya(x, y, S, T), and let E ′ be the event that we sample and add a black
marble in step z in Pólya(x, y, S′, T ′). We observe that Pr[E ′] ≤ Pr[E]. From
the structure of the urn process it follows that the majorization holds for all
following sampling steps and therefore

F̂ ′x(t) � F̂x(t) and F̂ ′y(t) � F̂y(t) .

This concludes the induction step.
By repeated application of above observation we can move zi to position

i. From the induction over all possible moves of elements of S ∪ T we obtain
that we can maintain the majorization while moving all elements to the
first |S| + |T | positions. As a final observation we note that if we have
S∪T = {1, 2, . . . , |S|+ |T |} then the urn process Pólya(x, y, S, T) starting after
step |S|+ |T | is identical to the urn process Pólya(x− |S|, y + |T |, ∅, ∅).

We now focus on the analysis of the Bit-Propagation sub-phase. Similar to
the analysis done for the synchronous case, we first analyze the number of bits
which are set during the Bit-Propagation sub-phase without taking the color
into consideration. The following lemma follows from the observation that the
Bit-Propagation can be modeled by a simple asynchronous randomized-gossip-
based information dissemination process.

Lemma 87. All nodes which survive the Check-Synchronicity procedure fol-
lowing the Bit-Propagation sub-phase have their bit set with high probability.

Proof. Consider the references points τ3, τ5, and τ7 of the Bit-Propagation
block as defined in Algorithm 19.5. We will show that the number of set bits
increases quickly in the intervals [τ3, τ5] and (τ5, τ7]. More specifically, we
proceed in three parts and we argue that with high probability

191

19 Asynchronous Protocol

(i)
∣∣∣X̃(τ3)

∣∣∣ ≥ c · n/k2 for some small enough constant c > 0,

(ii)
∣∣∣X̃(τ5)

∣∣∣ ≥ n/2, and
(iii)

∣∣∣X̃(τ7)
∣∣∣ ≥ (1− o(1)) · n.

Lemma 80 together with (iii) implies the claim.
In each part we will rely on the fact (Lemma 80) that at each reference point

τ3, τ5, and τ7 the number of alive nodes is at least (1− o(1)) · n.

Part (i). By Corollary 85, the number of nodes with a bit set (to True) is at
least∣∣∣X̃(τsh2)

∣∣∣ = |L(τsh2)| · |{v ∈ L(τtc1) : v ∈ Cj}|2

n2 · (1− o(1)) = Ω
(
a2/n

)
.

Furthermore, we have a2/n ≥ (n/k)2/n = n/k2 and thus
∣∣∣X̃(τsh2)

∣∣∣ = Ω
(
n/k2).

By Lemma 80, the fraction of these nodes which are alive at τ3 is at least
c · n/k2 for some small enough constant c > 0.

Part (ii). Let x(t) be the number of nodes which have a bit set at time t.
We show by induction that for i ∈ [0, τ5 − τ3],

x(τ + i) ≥ min
{
n

2 ,
c · n
k2

(
1 + 1

8e

)i}
.

Fix an arbitrary i. If x(τ + i− 1) > n/2, then we are done and thus we assume
x(τ + i − 1) < n/2. Let U be the set of nodes which did not have their bit
set at time τ + i − 1. By assumption, |U | ≥ n/2. Let S be the set of nodes
which ticked at round τ + i. By a standard balls-into-bins arguments, we have
that |S| is at least n/e with high probability. Since each node is equally likely
to tick we conclude from this and the assumption x(τ + i − 1) ≤ n/2 that
|S ∩ U | ≥ n/(4e) with high probability.
For j ∈ S ∩ U define Zj to the indicator variable that node j set a bit in

round τ + i. Note that all Zj are independent and Pr[Zj = 1] = x(τ + i− 1)/n.
For Z =

∑
Zi, Z ≥ |S ∩ U | · x(τ + i− 1)/(2n) ≥ x(τ + i− 1)/(8e) with high

probability, by Chernoff bounds. We get that

x(τ+i) ≥ x(τ+i−1)+|{i | Zi = 1}| ≥ x(τ+i−1)
(

1 + 1
8e

)
≥ c · n

k2 ·
(

1 + 1
8e

)i
,

where the last inequality is due to the induction hypothesis. This completes
the induction. We obtain, using τ5 − τ3 − 2∆ ≥ 16 log(k2/(2c)),

x(τ5) ≥ c · n
k2

(
1 + 1

8e

)τ5−τ3−2∆
≥ c · n

k2 ·
k2

2c = n/2 .

This completes the proof of (ii).

192

19.4 Analysis of the Bit-Propagation sub-phase

Part (iii). Let S be the set of nodes which do not have a bit set at time
τ5 and which were alive at τ7. Consider an arbitrary node i ∈ S. Since i
was alive at τ7 we have that it ticked at least ι = τ7 − τ5 − 2∆ times. The
probability that it never sampled a node with a set bit is thus at most 2−ι =
2−O(logn/ log logn). Hence, the expected number of nodes of S not setting a bit
is, by using independence and Chernoff bounds, at most 2|S| ·2−O(logn/ log logn).
Furthermore,∣∣∣X̃(τ7)

∣∣∣ ≥ |L(τtc2)| − 2|S| · 2−O(logn/ log logn)

≥ (1− o(1)) · n− 2|S| · 2−O(logn/ log logn) ≥ (1− o(1)) · n .

This completes Part (iii) and the proof follows by Lemma 80.

We now state the main lemma for the bit propagation sub-phase. On a high
level we argue that after the bit-propagation phase a large fraction of nodes
have their bit set and that the distribution leads to a quadratic increase in the
difference between the largest and second largest color.

Lemma 88. Consider an arbitrary but fixed Bit-Propagation sub-phase which
consists of ticks τbp1 to τbp2. For every t ∈ [τbp1, τbp2] we have with high
probability that

|X1(t)| = |X(t)| · |X1(τbp1)|
|X(τbp1)| · (1− o(1)) ,

and for any color Cj 6= A

|Xj(t)| = |X(t)| · |Xj(τbp1)|
|X(τbp1)| · (1 + o(1)) + O

(
n2/3

)
.

Proof. We start by observing that during the Bit-Propagation sub-phase nodes
only perform actions when they have their bit not yet set. Therefore, a node
sets its bit at most once. Note that it may very well happen that a node
without bit is selected to tick, and this node samples another node with unset
bit. However, the color distribution among the nodes does not change in that
case at this time step. We therefore consider the subsequence of time steps at
which nodes which do not yet have their bit set successfully sample another
node which has its bit set. More precisely, we only consider those time steps,
during which a node sets its bit and changes its color.
In the following, we couple the Bit-Propagation sub-phase with respect to

color A with the generalized Pólya urn process defined in Definition 27. For the
coupling, we assume that each node of color A which has its bit set corresponds
to a black marble and each node of any other color Cj 6= A which has its bit
set corresponds to a white marble. While we describe the coupling in detail
for color A to give lower bounds, the same arguments holds symmetrically if
we couple such that nodes of any other color Cj 6= A which have their bit set

193

19 Asynchronous Protocol

correspond to white marbles and the remaining nodes of color Cj′ 6= Cj which
have their bit set correspond to black marbles.
There are three types of events which alter the content of the urn. First,

nodes may tick, survive the Check-Synchronicity procedure, and enter the
communication window of the Bit-Propagation sub-phase late, that is at any
time after τ2. Since these nodes now can be sampled by other nodes which are
already in the urn, they alter the urn by adding either a black or white marble,
depending on their color. Their number will be small, as we will see later.
Secondly, nodes may leave the communication window early, that is before τ7,
and therefore decrease the number of nodes which can be sampled. This alters
the urn by removing either a black or a white marble, depending on their color.
Again, we will show that the error introduced by this is small. Finally, nodes
which have do not yet have their bit set may open a connection to a node
which has its bit set. In that case, an additional marble is added. Observe
that the nodes open connections uniformly at random. Therefore, the color of
the marble to be added is selected uniformly at random from the colors of the
set of nodes which are already in the urn, that is, they have their bit set.

Since we are interested in a lower bound on the number of black marbles in
the urn at any time, we can couple the original process with a process where
(i) nodes T which enter the urn later are always white and (ii) the nodes S
leaving the urn early are black.

We therefore conclude that we can model the Bit-Propagation sub-phase for
color A by means of the generalized Pólya urn process Pólya(x, y, S, T), where
we have

x ≥ |X1(τbp4)| · (1− o(1)) ,

y ≤
∑
Cj 6=A

|Xj(τbp4)| · (1 + o(1)) ,

the set S ⊂ N contains the steps in the urn process at which nodes of color A
prematurely leave the urn, and T ⊂ N is the set of steps in the urn process at
which late nodes of color Cj 6= A enter the urn. Observe that in a worst-case
analysis, we do not take into consideration nodes of color A which are added to
the urn, nor nodes of any other color Cj 6= A which are removed from the urn.
From Lemma 86 we obtain that we can couple Pólya(x, y, S, T) with

Pólya(x− |S|, y + |T |, ∅, ∅), which again corresponds to the original Pólya urn
model.
Let M be the minimum number of nodes which have their bit set in the

Pólya urn process. Due to Lemma 80, we have with high probability

M ≥ |X(τbp1)| − ζ · n ≥ n/(2k)− ζ · n ≥ n/(4k)

for sufficiently small k. Let F ′x(t) be the fraction of black marbles in step t
of the original Pólya urn process corresponding to Pólya(x− |S|, y + |T |, ∅, ∅)
and recall that the fraction of black marbles in the original Pólya urn process is

194

19.4 Analysis of the Bit-Propagation sub-phase

a martingale. Observe furthermore that |F ′x(t)− F ′x(t− 1)| ≤ 1/M throughout
the entire process. Let T be the last step of the original Pólya urn process and
observe that T ≤ n. Applying Azuma’s inequality to F ′x(t) for any t ≤ T gives
us

Pr
[
|F ′x(t)− F ′x(1)| ≥ δ

]
≤ 2 · exp

(
− δ2

2 ·
∑t
i=1 1/M2

)

≤ 2 · exp
(
−δ

2 ·M2

2 · t

)
.

We set δ = c′ · k ·
√

logn/n and obtain

Pr

[
|F ′x(t)− F ′x(1)| ≥ c · k ·

√
logn/n

]
≤ 2 · exp

(
−c · k

2 ·M2 · logn
n · T

)
≤ 2 · exp(−c · logn) .

From the calculation above, and taking the union bound over the colors, we
see that for any color Cj the ratio of nodes of that color to all nodes remains
almost a constant. To derive a lower bound on the number of black marbles at
the end of the process or, equivalently, a lower bound on |X1(τbp2)|, we bound
|S| and |T | in the following way. By Corollary 85 we have |S| = o(|X1(τbp2)|).
Let x = |X1(τbp2)| Furthermore, by Lemma 80, |T | ≤ ζn. We thus have

F ′x(1) ≥ x− |S|
|X(τbp1)| ≥

x(1− o(1))
|X(τbp1)|

and for any t ≤ T ,

F ′x(t) ≥ x(1− o(1))
|X(τbp1)| − c · k ·

√
logn/n

= x(1− o(1))− |X(τbp1)|c · k ·
√

logn/n
|X(τbp1)|

≥ x(1− o(1))− (2k · α2/n)c · k ·
√

logn/n
|X(τbp1)|

≥ x(1− o(1))
|X(τbp1)| ,

where by Chernoff bounds the second inequality holds with high probability.
Furthermore, the probability that a randomly chosen node has opinion A at
time t is is at least |X1(τbp1)|/|X(τbp1)| · (1− o(1)) and thus using a standard
coupling and Chernoff bounds we derive that with high probability

|X1(t)| = |X(t)| · |X1(τbp1)|
|X(τbp1)| · (1− o(1)).

It remains to establish an upper bound on |Xj(τbp2)| for every other color
Cj 6= A. We will use a symmetric argument. Let Cj be an arbitrary but fixed

195

19 Asynchronous Protocol

color. This time we use the white marbles to represent Cj and the black marbles
to represent all colors Ci 6= Cj . Again, let S and T denote the set of black
marbles which are removed early and the set of white marbles which are added
during the urn process. By Corollary 85, |T | ≤ (1− o(1))·|Xj(τbp2)|+O

(
log2 n

)
and, by Lemma 80, |S| ≤ ζ · n.
According to Lemma 86 we can again couple Pólya(x, y, S, T) with the

original Pólya urn process Pólya(x− |S|, y + |T |, ∅, ∅) and derive, for every
t ≤ T ,

Pr
[
|F ′y(t)− F ′y(1)|

]
≤ 2 · exp

(
−c · k

2 ·M2 · logn
n · T

)
,

which yields, by using the same arguments as before,

F ′y(t) ≤
x(1 + o(1))
|X(τbp1)| + O

(1
n1/3

)
.

Symmetrically, the number of nodes of color Cj is with high probability

|Xj(t)| = |X(t)| · |Xj(τbp1)|
|X(τbp1)| · (1 + o(1)) + O

(
n

2/3
)
,

which finishes the proof.

Recall that after the Bit-Propagation sub-phase the nodes go through a
shuffle gadget. The following lemma deals with the properties of the nodes
after they went through this gadget.

Lemma 89. We consider the Two-Choices sub-phase following the Bit-
Propagation sub-phase. For any period τ in the Two-Choices sub-phase or in
the shuffle gadget following the Two-Choices sub-phase, we have∣∣{v ∈ X1(τbp2) : |T ′v(τ)− τ | ≤ 3c′ logn/ log logn

}∣∣
≥ |L(τbp2)| · |X1(τbp1)|

|X(τbp1)| · (1− o(1)) .

Similarly, for any color Cj we have
∣∣{v ∈ Xj(τbp2) : |T ′v(τ)− τ | ≤ 3c′ logn/ log logn

}∣∣
≤ |L(τbp2)| · |Xj(τbp1)|

|X(τbp1)| · (1 + o(1)) + O
(
n

2/3
)
.

Furthermore, it holds that

|Xj(τbp2)| =
∣∣{v ∈ Xj(τbp2) : |T ′v(τ)− τ | ≤ 3c′ logn/ log logn

}∣∣
· (1 + o(1)) + O(logn) ,

with high probability.

196

19.5 The Endgame

Proof. This lemma follows from Lemma 82 and Lemma 88. From Lemma 82 we
know that all but an exp(−Ω(logn/ log logn)) fraction of the nodes that are
alive after leaving the shuffle gadget preceding the Bit-Propagation sub-phase
will be 3c′ logn/ log logn-close during the Bit-Propagation sub-phase as well
as in the following shuffle gadget, and this also holds for every color separately.
According to Lemma 88, every node samples a color Cj with probability at
least |X1(τbp1)|/|X(τbp1)| · (1− o(1)) for j = 1 and with probability at most
|Xj(τbp1)|/|X(τbp1)| · (1 + o(1)) + O

(
n−1/3

)
otherwise, where this probability

bounds hold independently, if the high probability statement of Lemma 88 is
fulfilled. Applying then again Lemma 82 for the nodes which survive the shuffle
gadget following the Bit-Propagation sub-phase, we obtain the lemma.

19.5 The Endgame

In the remainder of this chapter, we analyze the simple asynchronous two-
choices process which can be used to ensure that A wins after additional
O(n logn) time steps in the sequential asynchronous model, one we have
a ≥ (1/2 + εPart 1) · n. The algorithm is essentially the same as specified in
Algorithm 17.1, however the instruction is executed asynchronously upon each
tick. To clearly separate the execution of the two-choices algorithm from the
first part, we propose to start the second part with a do-nothing-block of length
Θ(logn) ticks. After these ticks, we can apply standard concentration bounds
to observe that all nodes are synchronous up to constant factors. The rest of
this section is structured as follows. In Lemma 90 we give a lower bound on
the size of A throughout the rest of this execution of Algorithm 17.1. This
lower bound on A allows to show that the number of nodes having a color
different from A decreases quickly in expectation. This expected drop lets us
apply standard drift theorem (Theorem 92) to obtain a bound on the required
time until A prevails and all other colors vanish.

Lemma 90. Fix an arbitrary tick t and an arbitrary constant c. If at ≥
(1/2 + 3ε)n for some arbitrary constant ε > 0, then for any t′ ≤ t+ c · n logn
we have at′ ≥ (1/2 + ε)n with high probability.

Proof. W.l.o.g. let bt = n − at. We show by induction that for every i ∈
[0, c · logn/ε] at time ti = i ·εn that we have ati ≥ (1/2+3ε)n− i · (c′

√
n · logn)

with high probability for some constant c′. Note that this implies the claim
since ti+1 − ti ≤ εn. Fix an i. Define the random variable

Xτ =


1 with probability bτ · a2

τ/n
2

−1 with probability aτ · b2τ/n2

0 otherwise.

197

19 Asynchronous Protocol

Define Yτ =
∑
k≤τ Xk. We show that Yτ is a sub-martingale.

E[Yτ |Yτ−1, . . . , Y1] = Yτ−1 + E[Xτ |Yτ−1, . . . , Y1]
= Yτ−1 − aτ · b2τ/n2 + bτa

2
τ/n

2

= Yτ−1 + aτ · bτ/n2(aτ − bτ)
≥ Yτ−1 ,

by induction bτ ≤ aτ . Applying the Azuma-Hoeffding bound to Yτ gives us

Pr
[
Yti+1 − Yti ≤ −c′

√
n · logn

]
≤ exp

(
−c
′2n · logn

2εn

)
,

which yields for sufficiently large c′ that the inductive steps holds with high
probability. This completes the proof.

Lemma 91. Fix an arbitrary tick t. Assume Process P ′ where at′ ≥ (1/2+ε)n
for Θ(n logn) for any t′ ≤ t+ Θ(n logn). After Θ(n logn) time steps all nodes
have opinion A with high probability. Note that Θ(n logn) ticks correspond to
Θ(logn) time steps.

Proof. W.l.o.g. let bt = n− at. We have

E[bτ+1|Fτ] = aτ · b2τ/n2 − bτa2
τ/n

2

= aτ · bτ/n2(bτ − aτ) ≤ bτ
2n(−2ε)

= −ε · bτ
n

=
(

1− n+ ε

n

)
bτ .

Define Φ(xt) = bt. Note that Φ(xmax) ≤ n and in expectation we have
E[Φ(xt+1)|Φ(xt)] ≤ (1− ε/n)Φ(xt). Let τ be the first point in time where all
nodes agree on color A. We derive from Theorem 92 with parameters δ = 1
and ν(n) = n/(n+ ε) that Pr[τ ≥ n/ε(ln Φ(n) + c · lnn)] ≤ n−c.

The following is a slightly simplified definition and slightly weaker version of
theorem given in [DG13].

Definition 28 ([DG13]). Let ν : N→ R≥0 be monotonically increasing. We
call Φ : Ωn → R≥0 a feasible ν-drift function for an algorithm A, if the following
conditions are satisfied.

1. Φ(x) = 0 for all x ∈ Ωopt;
2. Φ(x) ≥ 1 for all x ∈ Ωn \ Ωopt;
3. there exists a constant δ > 0 (which is independent of n) such that for

all xt ∈ Ωn \ Ωopt

E[Φ(xt+1)|Φ(xt)] ≤ (1− δ/ν(n))Φ(xt) .

198

19.6 Proof of Theorem 63

Theorem 92 ([DG13]). Let Φ : Ωn → R. Denote by Φmax = max{Φ(x)|x ∈
Ωn} the maximum value of Φ. If Φ is a feasible ν-drift function (with implicit
constant δ) under Algorithm A, then the stopping time τ = min{t ≥ 0 : xt ∈
Ωopt}, where xt is the state at time t, is at most

ν(n)
δ

(1 + ln Φ(xmax)).

Also, for any c > 0 (possibly depending on n), we have that

Pr

[
τ ≥ ν(n)

δ
(ln Φ(xmax) + c · lnn)

]
≤ n−c.

19.6 Proof of Theorem 63

We use Lemma 84, Lemma 89, and Lemma 91 to show Theorem 63, which is
restated as follows.
Theorem 63. Let G = Kn be the complete graph with n nodes. Let k =
exp

(
O
(
logn/ log2 logn

))
be the number of opinions. Let εbias > 0 be a con-

stant. The asynchronous plurality consensus process AsyncPlurality defined
in Algorithm 19.1 on G converges within time Θ(logn) to the majority opinion
A, with high probability, if c1 ≥ (1 + εbias) · ci for all i ≥ 2.

Proof. From Lemma 84 we get for any color Cj that at the end of the first
reference point of the Bit-Propagation sub-phases

|Xj(τbp1)| = |L(τtc2)| · |{v ∈ L(τtc1) : v ∈ Cj(τtc1)}|2

n2

· (1± o(1)) + O
(
log2 n

)
(19.2)

and from Lemma 89 we observe that at the last reference point τT of the phase
we get

|{v ∈ L(τT) : v ∈ Cj(τT)}| = n · |X1(τbp1)|
|X(τbp1)| · (1± o(1)) + O

(
n

2/3
)
. (19.3)

Combining (19.2) with (19.3) and applying Lemma 80 yields

|{v ∈ L(τT) : v ∈ Cj(τT)}| = |{v ∈ L(τtc1) : v ∈ Cj(τtc1)}|2

|X(τbp1)|
· (1± o(1)) + O

(
n

2/3
)
. (19.4)

We observe that (19.4) is the asynchronous counter part of Lemma 74 and
essentially shows the desired quadratic increase in A. Iterating the argument
for all Θ(log logn) analogously to Theorem 62 shows that at the end of Algo-
rithm 19.1 all but o(1) · n nodes have opinion A. In the remaining Θ(logn)
time steps of the simple two-choices protocol, we have by Lemma 91 that all
nodes reach consensus after Θ(logn) time steps. This completes the proof.

199

20
Simulation Results

In this chapter we present simulation results to support our theoretical findings.
We implemented our simulation to run on a shared memory machine and
simulate the distributed system.
First, we measured the run time until the process converged to A. We set

k ≈
√
n, a − b ≈

√
n logn, and c2, . . . , ck ≈ n/k, to simulate the processes

for varying n. Our simulation results indicate that, as shown in Theorem 62,
the memory based plurality consensus protocol outperforms the classical two-
choices approach by orders of magnitude, see Figure 20.1.
Secondly, we investigated the behavior of the bits used in Chapter 18. We

therefore plotted in Figure 20.2 the relative number of nodes which have a
bit set and color A among all other nodes which have a bit set. That is, our
plots show x1(t)/x(t) for every round t on a complete graph of n = 106 nodes.
Additionally, the relative number of nodes of color A is shown in the plot.
The simulation indeed confirms an exponential growth of A during the bit
propagation phase.
Finally, in Figure 20.3 we empirically analyzed the success rate for varying

initial bias on a complete graph of n = 106 nodes with k = 1000 opinions.
The success rate is the relative number of runs where A won over the total
number of runs. In the plot, an initial bias of 0 means that c1 = · · · = ck,
while an initial bias of x means that c1 = cj + x± 1 for j ≥ 2. The simulation
results indicate that the constant z from Theorem 61 required for the initial
bias towards A such that A wins with high probability is small. Similarly, for
the memory-based approach the empirical success rate reaches 1 for a much
smaller initial bias than the one predicted by the theoretical results. This may
be due to the relatively small number of independent test runs R� n for each
data point.
Additionally, an asynchronous variant of the voting process described in

Algorithm 20.1 has been simulated. For our simulation, we ran the process in

201

20 Simulation Results

the sequential asynchronous model. However, the run time shown in the plot is
the parallel run time. Our simulation results empirically show that this simple
asynchronous memory-based voting process performs very well for practical
application.

Acknowledgments. The author would like to thank Gregor Bankhamer for
helpful discussions and important hints.

202

 0

 100

 200

 300

 400

 500

0 1·106 2·106 3·106 4·106

Graph Size

Two Choices
Memory

Asynchronous
Simple

Figure 20.1: run times for the algorithms defined in Algorithm 17.1, Algorithm 18.1,
Algorithm 19.1, and Algorithm 20.1 over the graph sizes

1

10-2

10-1

0 20 40 60

Round

Relative Size of A
x1(t)/x(t)

Figure 20.2: the relative number of bits and the relative size of the plurality color A during
the execution of Algorithm 18.1

203

20 Simulation Results

0.0

0.2

0.4

0.6

0.8

1.0

 0 1000 2000 3000 4000 5000

Initial Bias

Two Choices
Memory

Figure 20.3: the success rate of the algorithms defined in Algorithm 17.1 and Algorithm 18.1
for varying initial bias c1 − c2

Algorithm asynchronous(G = (V,E); color : V → C;
bit : V → {True,False})
at each node v do asynchronously

for phase s = 1 to 10 · log2 |V | do
let u1, u2 ∈ N(v) uniformly at random;
if color(u1) = color(u2) then

color(v) ← color(u1);
bit(v) ← True ;

else
bit(v) ← False ;

for 2 ticks do /* bit-propagation subphase */
let u ∈ N(v) uniformly at random;
if bit(u) = True then

color(v) ← color(u);
bit(v) ← True ;

Algorithm 20.1: simple asynchronous distributed voting protocol

204

Conclusions and Outlook

21
Summary and Conclusions

In Part I, we have shown that for all-to-all communication using randomized
gossiping protocols the results from the complete graph by Berenbrink et al.
carry over to random graphs. We showed that it is possible to reduce the
communication complexity at the cost increasing the run time. Interestingly,
in the slightly weaker model by Chen and Pandurangan a contradicting lower
bound has been shown. Also, for one-to-all communication in the same model,
it had been shown that the performance of randomized broadcasting cannot
be achieved in sparse graphs even if they have best expansion and connectivity
properties. While the general proofs are in the same spirit as the results
by Berenbrink et al., at various places an elaborate analysis was required to
maintain the claims.

12.0

12.5

13.0

2⋅105 106

Fast Gossiping

Figure 21.1: a detail from Figure 8.1

For our results on randomized gos-
siping algorithms, we also performed
an empirical analysis, where we sim-
ulated a distributed system and mea-
sured the number of rounds and the
total communication complexity, until
all messages had been disseminated to
all other nodes. Our empirical data di-
rectly reflect the benefits of the random
walk approach described in Chapter 6.
We would like to emphasize the results
presented in Figure 8.1. The impact of
our random walk approach is directly reflected in the run time of the corre-
sponding protocol. This can be observed in the detailed view in Figure 21.1.
Additionally, out empirical analysis does not only support our theoretical
findings, but shows that the actual constants required to perform randomized
gossiping are relatively small. We conclude that by carefully tuning these
constants, one can obtain protocols that work very well in practice.

207

21 Summary and Conclusions

In Part II, we have presented an empirical analysis with focus on second
order diffusion schemes for load balancing applications. Especially for torus
graphs, our results for discrete diffusion based load balancing algorithms show
a clear advantage of second order schemes over first order schemes.

10-2

100

102

104

106

1000 0 200 400 600 800

max |αi|

Figure 21.2: the impact of eigenvectors on
the load, a detail from Figure 11.7

We furthermore empirically analyzed
the remaining load imbalance once the
system has converged such that no
node has more than a constant number
of additional load tokens. We proposed
to switch from SOS to FOS once this
state is reached, and our simulations
show that approach leads to a further
drop of the remaining load imbalance.

As an empirical contribution in this
part, we would like to recall the follow-
ing detail of a plot from Chapter 11
shown in Figure 21.2. It shows that
the leading eigenvector, the eigenvector with the largest coefficient αi, governs
the convergence rate of the load balancing process.

(x1 ∨ x2 ∨ x3)

K`

x1 x′
1

K`

x2 x′
2

K`

x1 x′
1

K`

x1 x′
1

K`

x2 x′
2

K`

x1 x′
1

Kwhite

or

Figure 21.3: a gadget from the reduction
of 3sat to vtpd from Figure 13.5

In Part III, we analyzed a syn-
chronous distributed voting process,
where each node adopts the major-
ity opinion, black or white, among its
neighbors in every round. The quan-
tity of interest was the so-called voting
time, the time until a two-periodic state
of the process is reached. We gave a
new upper bound on the voting time
that could be computed in linear time
and asymptotically improved the previ-
ously best known bound of O(|E|) on
many graph classes. Furthermore, we
showed by a reduction of the corresponding decision problem from 3sat that
computing the voting time in general is NP hard. Finally, we analyzed various
computational properties of the majority voting process w.r.t. the potential
function used in proving the upper bounds on the voting time.

Finally, in Part IV we considered a plurality consensus process, where each
node initially had one of k possible opinions where k = O(nε) for a small
constant ε > 0. We showed that for the two-choices process originally defined
by Cooper et al. all nodes adopt the initial plurality opinion after at most
O(n/c1 · logn) rounds, where c1 is the size of the largest color, if initially the
difference between the largest and the second largest color is at least z ·

√
n logn

for some constant z.

208

0

25

50

75

100

125

150

103 104 105 106 107

Two Choices
One Bit of Memory

Figure 21.4: run time of the two-choices
and the memory protocols from Figure 20.1

Then, we slightly changed the model
and devised an algorithm which is al-
lowed to transmit one additional bit.
We combined the benefits of the two-
choices protocol with the power of infor-
mation dissemination and obtained an
algorithm which requires only a slightly
larger initial additive bias towards the
plurality opinion of z ·

√
n log3 n, but

converges after only O
(
log2 n

)
rounds.

Finally, we adapted this algorithm
to the asynchronous setting. In the
asynchronous model, we assumed that
nodes are equipped with a random clock that ticks according to a Poisson
distribution once per time unit. For our analysis, we assumed the equivalent
model in which nodes are selected uniformly at random in discrete time steps
to perform their actions. In our model, we allowed nodes to communicate
upon activation with at most a constant number of neighbors. We showed that
the results from the memory model carry over to the asynchronous setting.
Precisely, we showed that for k = exp

(
O
(
logn/ log2 logn

))
colors and an

initial bias towards the plurality color C1 such that c1 ≥ (1 + εbias)ci for any
other color Ci with i ≥ 2 our algorithm solves plurality consensus and the
process converges to color C1 in the best possible run time of Θ(logn) time.

209

22
Open Problems

Finally, in this last chapter we identify various open problems related to
the results presented in this thesis. In Part I, we presented our first result
regarding the classical random phone call model for random graphs in the
configuration model, while our second result regarding the memory model was
presented for random graphs in the Erdős-Rényi model. For completeness, it
would be interesting to show the first result in the Erdős-Rényi model and the
second result for the configuration model as well. Also, it would be interesting
to know whether these results could be further generalized, in the following
sense. In our proofs, we extensively used the structural properties of random
graphs. However, one interesting contribution would be to identify global
graph properties, such as expansion or connectivity, and analyze whether these
properties imply the same or similar results.
In the analysis of the gossiping algorithm, we furthermore discussed the

behavior of random walks under congestion. That is, in our model we assumed
that all nodes collect incoming random walks and send these random walks
out one after the other, according to the random phone call model. Our result
showed that for a rather small number of O(n/ logn) random walks, each
of these random walks performs at least Ω(logn) steps in a period of length
Θ(logn) steps. The general problem, however, is of independent interest. In
a related work1, Becchetti et al. showed for n tokens an upper bound on the
maximum number of tokens which are enqueued at any node for the complete
graph. An analysis of the behavior of this process for sparse random graphs
for a large number of tokens, that is, Ω(n), would be of interest.
Regarding the results from Part II for diffusion based load balancing algo-

rithms, we would like to note that any improvement on the bounds between
the discrete and the idealized scheme would be interesting. However, to tighten

1 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Gustavo
Posta: Self-Stabilizing Repeated Balls-into-Bins. In Proceedings of the 27th ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), 2015, pages 332–339.

211

22 Open Problems

these results, one would probably need different techniques. Therefore, any
improvement would be a welcome contribution to the field of diffusion based
load balancing.
Originally, we motivated load balancing with improved processing times

of parallel computations in general and with finite element simulations in
particular. We are not aware of any practical implementations of highly
parallelized finite element solvers using load balancing based on discretized
second order diffusion. Adapting an existing finite element software to use our
load balancing algorithms would be, from the engineering point of view, an
interesting, albeit possibly challenging endeavor.
Regarding the plurality consensus process presented in Part IV, there do

exist various natural generalizations. It would be particularly interesting to
generalize the results in the memory model to a broader range of graph classes
and to dynamic networks. We believe that similar protocols should work on
many graph classes in both, the synchronous and the asynchronous model,
provided good expansion properties allow the rapid information dissemination
to all other nodes. However, the resulting protocols might be vulnerable to an
adversary who controls the initial assignment of opinions to nodes. It seems to
be an interesting, albeit difficult, task to identify an initial bias which is large
enough for the initial plurality color to win under presence of an adversary
which may redistribute the opinions before the first round, or possibly in every
round.

For the complete graph, an extension of the results to an even broader range
of initial opinions should be possible. This intuition is supported by simulations
of the two-choices protocol which were run successfully for k =

√
n.

Regarding the Check-Synchronicity procedure and the Shuffle Gadget used in
the analysis of the asynchronous plurality consensus process in Chapter 19, we
would like to note that these gadgets seem to be required only for the analysis.
This observation is based on extensive simulations on up to 107 nodes, which
have essentially shown that a simple adaption of the synchronous algorithm to
the asynchronous model without these gadgets achieves the same results. It
therefore remains an open question whether our results could be maintained
using a less complicated algorithm.
We nevertheless believe that the Check-Synchronicity procedure and the

Shuffle Gadget are interesting in their own right. Therefore, a final open
problem is to identify the generality of these procedures and to describe
synchronous protocols in such a way that these gadgets can be used to construct
population protocols from a broad class of synchronous algorithms. Such a
general analysis could provide insights on the difficulties in bridging synchronous
and asynchronous models.

Acknowledgments. The author would like to thank all anonymous reviewers
who commented on the results presented in this thesis. Some of the open
problems stated above are based on their feedback.

212

Appendix

Bibliography

[AD15] Mohammed Amin Abdullah and Moez Draief: Global majority
consensus by local majority polling on graphs of a given degree
sequence. In Discrete Applied Mathematics, volume 180, 2015,
pages 1–10.

[AB12] Clemens P.J. Adolphs and Petra Berenbrink: Distributed Selfish
Load Balancing with Weights and Speeds. In Proc. PODC, 2012,
pages 135–144.

[ACL01] William Aiello, Fan Chung, and Linyuan Lu: A Random Graph
Model for Power Law Graphs. In Experimental Mathematics,
volume 10 (1), 2001, pages 53–66.

[ABEK14a] Hoda Akbari, Petra Berenbrink, Robert Elsässer, and Dominik
Kaaser: Discrete Load Balancing in Heterogeneous Networks
with a Focus on Second-Order Diffusion. In CoRR, volume
abs/1412.7018, 2014. url: http://arxiv.org/abs/1412.7018.

[ABEK14b] Hoda Akbari, Petra Berenbrink, Robert Elsässer, and Do-
minik Kaaser: Load Balancing Visualization Video. https :
//algorithms.cosy.sbg.ac.at/downloads/load-balancing-
video.mkv. 2014.

[ABEK15] Hoda Akbari, Petra Berenbrink, Robert Elsässer, and Dominik
Kaaser: Discrete Load Balancing in Heterogeneous Networks
with a Focus on Second-Order Diffusion. In Proceedings of the
35th IEEE International Conference on Distributed Computing
Systems (ICDCS), 2015, pages 497–506. doi: 10.1109/ICDCS.
2015.57.

[ABS16] Hoda Akbari, Petra Berenbrink, and Thomas Sauerwald: A Sim-
ple Approach for Adapting Continuous Load Balancing Processes
to Discrete Settings. In Distributed Computing, volume 29 (2),
2016, pages 143–161.

[AF02] David Aldous and James Allen Fill: Reversible Markov Chains
and Random Walks on Graphs. Unpublished. http://www.stat.
berkeley.edu/~aldous/RWG/book.html. 2002.

[AGV15] Dan Alistarh, Rati Gelashvili, and Milan Vojnović: Fast and
Exact Majority in Population Protocols. In Proc. PODC, 2015,
pages 47–56.

215

http://arxiv.org/abs/1412.7018
https://algorithms.cosy.sbg.ac.at/downloads/load-balancing-video.mkv
https://algorithms.cosy.sbg.ac.at/downloads/load-balancing-video.mkv
https://algorithms.cosy.sbg.ac.at/downloads/load-balancing-video.mkv
http://dx.doi.org/10.1109/ICDCS.2015.57
http://dx.doi.org/10.1109/ICDCS.2015.57
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html

Bibliography

[AGGZ10] Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Morteza
Zadimoghaddam: How Efficient Can Gossip Be? (On the Cost
of Resilient Information Exchange). In Proc. ICALP, 2010, pages
115–126.

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen: LAPACK Users’ Guide, 3rd edition. SIAM,
1999.

[AAE08] Dana Angluin, James Aspnes, and David Eisenstat: A simple
population protocol for fast robust approximate majority. In Dis-
tributed Computing, volume 21 (2), 2008, pages 87–102.

[AAER07] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert:
The computational power of population protocols. In Distributed
Computing, volume 20 (4), 2007, pages 279–304.

[AFJ06] Dana Angluin, Michael J. Fischer, and Hong Jiang: Stabilizing
Consensus in Mobile Networks. In Proc. DCOSS, 2006, pages
37–50.

[AR07] James Aspnes and Eric Ruppert: An Introduction to Population
Protocols. In Bulletin of the EATCS, volume 93, 2007, pages
98–117.

[AW04] Hagit Attiya and Jennifer Welch: Distributed Computing: Funda-
mentals, Simulations, and Advanced Topics, 2nd edition. Wiley,
2004.

[ACF+15] Vincenzo Auletta, Ioannis Caragiannis, Diodato Ferraioli,
Clemente Galdi, and Giuseppe Persiano: Minority Becomes
Majority in Social Networks. In Proc. WINE, 2015, pages 74–88.

[BCN+15a] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco
Pasquale, and Gustavo Posta: Self-Stabilizing Repeated Balls-
into-Bins. In Proc. SPAA, 2015, pages 332–339.

[BCN+15b] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco
Pasquale, and Riccardo Silvestri: Plurality Consensus in the
Gossip Model. In Proc. SODA, 2015, pages 371–390.

[BCN+14] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco
Pasquale, Riccardo Silvestri, and Luca Trevisan: Simple Dynam-
ics for Plurality Consensus. In Proc. SPAA, 2014, pages 247–
256.

[BCN+16] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco
Pasquale, and Luca Trevisan: Stabilizing Consensus with Many
Opinions. In Proc. SODA, 2016, pages 620–635.

216

Bibliography

[BC78] Edward A. Bender and E. Rodney Canfield: The Asymptotic
Number of Labeled Graphs with Given Degree Sequences. In Jour-
nal of Combinatorial Theory, Series A, volume 24 (3), 1978, pages
296–307.

[BTV09] Florence Bénézit, Patrick Thiran, and Martin Vetterli: Interval
consensus: From quantized gossip to voting. In Proc. ICASSP,
2009, pages 3661–3664.

[BCO+14] Itai Benjamini, Siu-On Chan, Ryan O’Donnell, Omer Tamuz,
and Li-Yang Tan: Convergence, unanimity and disagreement in
majority dynamics on unimodular graphs and random graphs. In
CoRR, volume abs/1405.2486, 2014. url: http://arxiv.org/
abs/1405.2486.

[BCF+15] Petra Berenbrink, Colin Cooper, Tom Friedetzky, Tobias
Friedrich, and Thomas Sauerwald: Randomized diffusion for
indivisible loads. In Journal of Computer and System Sciences,
volume 81 (1), 2015, pages 159–185.

[BCEG10] Petra Berenbrink, Jurek Czyzowicz, Robert Elsässer, and Leszek
Gąsieniec: Efficient Information Exchange in the Random Phone-
Call Model. In Proc. ICALP, 2010, pages 127–138.

[BEF08] Petra Berenbrink, Robert Elsässer, and Tom Friedetzky: Efficient
Randomised Broadcasting in Random Regular Networks with
Applications in Peer-to-Peer Systems. In Proc. PODC, 2008,
pages 155–164.

[BES14] Petra Berenbrink, Robert Elsässer, and Thomas Sauerwald: Com-
munication Complexity of Quasirandom Rumor Spreading. In
Algorithmica, 2014, pages 1–26.

[BFGK16] Petra Berenbrink, Tom Friedetzky, George Giakkoupis, and Peter
Kling: Efficient Plurality Consensus, or: The benefits of cleaning
up from time to time. In Proc. ICALP, 2016.

[BFH09] Petra Berenbrink, Tom Friedetzky, and Zengjian Hu: A new
analytical method for parallel, diffusion-type load balancing. In
Journal of Parallel and Distributed Computing, volume 69 (1),
2009, pages 54–61.

[BFK+16] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik
Mallmann-Trenn, and Chris Wastell: Plurality Consensus
via Shuffling: Lessons Learned from Load Balancing. In CoRR,
volume abs/1602.01342, 2016. url: http://arxiv.org/abs/
1602.01342.

[BGKM16] Petra Berenbrink, George Giakkoupis, Anne-Marie Kermarrec,
and Frederik Mallmann-Trenn: Bounds on the Voter Model in
Dynamic Networks. In Proc. ICALP, 2016.

217

http://arxiv.org/abs/1405.2486
http://arxiv.org/abs/1405.2486
http://arxiv.org/abs/1602.01342
http://arxiv.org/abs/1602.01342

Bibliography

[Ber01] Eli Berger: Dynamic Monopolies of Constant Size. In Journal
of Combinatorial Theory, Series B, volume 83 (2), 2001, pages
191–200.

[BT89] Dimitri Bertsekas and John Tsitsiklis: Parallel and Distributed
Computation: Numerical Methods. Prentice Hall, 1989.

[BG03] Andreas Blass and Yuri Gurevich: Algorithms: A Quest for Ab-
solute Definitions. In Bulletin of the EATCS, volume 81, 2003,
pages 195–225.

[Boi90] J. E. Boillat: Load balancing and Poisson equation in a graph. In
Concurrency and Computation: Practice and Experience, volume
2 (4), 1990, pages 289–313.

[Bol80] Béla Bollobás: A Probabilistic Proof of an Asymptotic Formula
for the Number of Labelled Regular Graphs. In European Journal
of Combinatorics, volume 1 (4), 1980, pages 311–316.

[Bol01] Béla Bollobás: Random Graphs, 2nd edition. Cambridge Univer-
sity Press, 2001.

[BW01] Sherif Botros and Steve Waterhouse: Search in JXTA and Other
Distributed Networks. In Proc. P2P, 2001, pages 30–35.

[BGPS06] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat
Shah: Randomized Gossip Algorithms. In IEEE Transactions on
Information Theory, volume 52 (6), 2006, pages 2508–2530.

[BM91] Carl B. Boyer and Uta C. Merzbach: A History of Mathematics,
2nd edition. Wiley, 1991.

[BMPS04] Siddhartha Brahma, Sandeep Macharla, Sudebkumar Prasant
Pal, and Sudhir Kumar Singh: Fair Leader Election by Random-
ized Voting. In Proc. ICDCIT, 2004, pages 22–31.

[CC12] Luca Cardelli and Attila Csikász-Nagy: The Cell Cycle Switch
Computes Approximate Majority. In Scientific Reports, volume
2 (656), 2012.

[CS12] Keren Censor-Hillel and Hadas Shachnai: Fast Information
Spreading in Graphs with Large Weak Conductance. In SIAM J.
on Computing, volume 41 (6), 2012, pages 1451–1465.

[CP12] Jen-Yeu Chen and Gopal Pandurangan: Almost-Optimal Gossip-
Based Aggregate Computation. In SIAM Journal on Computing,
volume 41 (3), 2012, pages 455–483.

[CKO13] Flavio Chierichetti, Jon Kleinberg, and Sigal Oren: On Discrete
Preferences and Coordination. In Proc. EC, 2013, pages 233–250.

[CLP10] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi:
Rumour Spreading and Graph Conductance. In Proc. SODA,
2010, pages 1657–1663.

218

Bibliography

[CDFR16] Colin Cooper, Martin Dyer, Alan Frieze, and Nicolás Rivera:
Discordant voting processes on finite graphs. In CoRR, volume
abs/1604.06884, 2016. url: http://arxiv.org/abs/1604.
06884.

[CEOR13] Colin Cooper, Robert Elsässer, Hirotaka Ono, and Tomasz
Radzik: Coalescing Random Walks and Voting on Connected
Graphs. In SIAM Journal on Discrete Mathematics, volume 27 (4),
2013, pages 1748–1758.

[CER14] Colin Cooper, Robert Elsässer, and Tomasz Radzik: The Power
of Two Choices in Distributed Voting. In Proc. ICALP, 2014,
pages 435–446.

[CER+15] Colin Cooper, Robert Elsässer, Tomasz Radzik, Nicolás Rivera,
and Takeharu Shiraga: Fast Consensus for Voting on General
Expander Graphs. In Proc. DISC, 2015, pages 248–262.

[CFR09] Colin Cooper, Alan Frieze, and Tomasz Radzik: Multiple Random
Walks in Random Regular Graphs. In SIAM Journal on Discrete
Mathematics, volume 23 (4), 2009, pages 1738–1761.

[CRRS16] Colin Cooper, Tomasz Radzik, Nicolas Rivera, and Takeharu
Shiraga: Fast plurality consensus in regular expanders. In CoRR,
volume abs/1605.08403, 2016. url: http://arxiv.org/abs/
1605.08403.

[CG10] Gennaro Cordasco and Luisa Gargano: Community Detection
via Semi-Synchronous Label Propagation Algorithms. In Proc.
BASNA, 2010, pages 1–8.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein: Introduction to Algorithms, 3rd edition. MIT
Press, 2009.

[CH94] Alain Cournier and Michel Habib: A New Linear Algorithm for
Modular Decomposition. In Proc. CAAP, 1994, pages 68–84.

[CG14] James Cruise and Ayalvadi Ganesh: Probabilistic consensus via
polling and majority rules. In Queueing Systems, volume 78 (2),
2014, pages 99–120.

[CDS80] Dragos Cvetkovic, Michael Doob, and Horst Sachs: Spectra of
graphs: Theory and application. Academic Press, 1980.

[Cyb89] George Cybenko: Dynamic Load Balancing for Distributed Mem-
ory Multiprocessors. In Journal of Parallel and Distributed Com-
puting, volume 7 (2), 1989, pages 279–301.

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry:
Epidemic Algorithms for Replicated Database Maintenance. In
Proc. PODC, 1987, pages 1–12.

219

http://arxiv.org/abs/1604.06884
http://arxiv.org/abs/1604.06884
http://arxiv.org/abs/1605.08403
http://arxiv.org/abs/1605.08403

Bibliography

[DP94] Xiaotie Deng and Christos Papadimitriou: On the Complexity
of Cooperative Solution Concepts. In Mathematics of Operations
Research, volume 19 (2), 1994, pages 257–266.

[DFM99] Ralf Diekmann, Andreas Frommer, and Burkhard Monien: Ef-
ficient schemes for nearest neighbor load balancing. In Parallel
Computing, volume 25 (7), 1999, pages 789–812.

[DFF11] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich: Social
Networks Spread Rumors in Sublogarithmic Time. In Proc. STOC,
2011, pages 21–30.

[DFS09] Benjamin Doerr, Tobias Friedrich, and Thomas Sauerwald:
Quasirandom Rumor Spreading: Expanders, Push vs. Pull, and
Robustness. In Proc. ICALP, 2009, pages 366–377.

[DG13] Benjamin Doerr and Leslie Ann Goldberg: Adaptive Drift Analy-
sis. In Algorithmica, volume 65 (1), 2013, pages 224–250.

[DGM+11] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas
Sauerwald, and Christian Scheideler: Stabilizing Consensus With
the Power of Two Choices. In Proc. SPAA, 2011, pages 149–158.

[DW83] Peter Donnelly and Dominic Welsh: Finite particle systems and
infection models. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 94 (1), 1983, pages 167–182.

[Dot14] David Doty: Timing in Chemical Reaction Networks. In Proc.
SODA, 2014, pages 772–784.

[DV12] Moez Draief and Milan Vojnović: Convergence speed of binary in-
terval consensus. In SIAM Journal on Control and Optimization,
volume 50 (3), 2012, pages 1087–1109.

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi: Concentration of
Measure for the Analysis of Randomized Algorithms. Cambridge
University Press, 2009.

[DR98] Devdatt Dubhashi and Desh Ranjan: Balls and Bins: A Study
in Negative Dependence. In Random Structures & Algorithms,
volume 13 (2), 1998, pages 99–124.

[Els06] Robert Elsässer: On the communication complexity of randomized
broadcasting in random-like graphs. In Proc. SPAA, 2006, pages
148–157.

[EK15] Robert Elsässer and Dominik Kaaser: On the Influence of Graph
Density on Randomized Gossiping. In Proceedings of the 29th
IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2015, pages 521–531. doi: 10.1109/IPDPS.2015.32.

[EM03] Robert Elsässer and Burkhard Monien: Load Balancing of Unit
Size Tokens and Expansion Properties of Graphs. In Proc. SPAA,
2003, pages 266–273.

220

http://dx.doi.org/10.1109/IPDPS.2015.32

Bibliography

[EMP02] Robert Elsässer, Burkhard Monien, and Robert Preis: Diffusion
Schemes for Load Balancing on Heterogeneous Networks. In
Theory of Computing Systems, volume 35 (3), 2002, pages 305–
320.

[EMS06] Robert Elsässer, Burkhard Monien, and Stefan Schamberger:
Distributing Unit Size Workload Packages in Heterogeneous Net-
works. In Journal of Graph Algorithms and Applications, volume
10 (1), 2006, pages 51–68.

[ES08] Robert Elsässer and Thomas Sauerwald: The Power of Memory
in Randomized Broadcasting. In Proc. SODA, 2008, pages 218–
227.

[ES09] Robert Elsässer and Thomas Sauerwald: Cover Time and Broad-
cast Time. In Proc. STACS, 2009, pages 373–384.

[ES10] Robert Elsässer and Thomas Sauerwald: Discrete Load Balancing
is (almost) as Easy as Continuous Load Balancing. In Proc.
PODC, 2010, pages 346–354.

[ER59] Paul Erdős and Alfréd Rényi: On random graphs. In Publicationes
Mathematicae (Debrecen), volume 6, 1959, pages 290–297.

[Eri14] Jeff Erickson: Algorithms and Models of Computation. lecture
notes. 2014. url: http://jeffe.cs.illinois.edu/teaching/
algorithms/.

[FPRU90] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal:
Randomized broadcast in networks. In Random Structures &
Algorithms, volume 1 (4), 1990, pages 447–460.

[Fel68] William Feller: An Introduction to Probability Theory and Its
Applications, 3rd edition. Wiley, 1968.

[FHP10] Nikolaos Fountoulakis, Anna Huber, and Konstantinos Pana-
giotou: Reliable broadcasting in random networks and the effect
of density. In Proc. INFOCOM, 2010, pages 1–9.

[FWM94] Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina: Parallel
Computing Works! Morgan Kaufmann, 1994.

[FL94] Pierre Fraigniaud and Emmanuel Lazard: Methods and prob-
lems of communication in usual networks. In Discrete Applied
Mathematics, volume 53 (1–3), 1994, pages 79–133.

[FGS12] Tobias Friedrich, Marti Gairing, and Thomas Sauerwald: Quasir-
andom Load Balancing. In SIAM Journal on Computing, volume
41 (4), 2012, pages 747–771.

[FS09] Tobias Friedrich and Thomas Sauerwald: Near-Perfect Load
Balancing by Randomized Rounding. In Proc. STOC, 2009, pages
121–130.

221

http://jeffe.cs.illinois.edu/teaching/algorithms/
http://jeffe.cs.illinois.edu/teaching/algorithms/

Bibliography

[FKW13] Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer:
Convergence in (Social) Influence Networks. In Proc. DISC, 2013,
pages 433–446.

[GP16] Mohsen Ghaffari and Merav Parter: A Polylogarithmic Gossip
Algorithm for Plurality Consensus. In Proc. PODC, 2016.

[GM96] Bhaskar Ghosh and S. Muthukrishnan: Dynamic Load Balancing
by Random Matchings. In Journal of Computer and System
Sciences, volume 53, 3 1996, pages 357–370.

[Gia11] George Giakkoupis: Tight bounds for rumor spreading in graphs
of a given conductance. In Proc. STACS, 2011, pages 57–68.

[Gia14] George Giakkoupis: Tight Bounds for Rumor Spreading with
Vertex Expansion. In Proc. SODA, 2014, pages 801–815.

[GS12] George Giakkoupis and Thomas Sauerwald: Rumor Spreading
and Vertex Expansion. In Proc. SODA, 2012, pages 1623–1641.

[Gif79] David Gifford: Weighted Voting for Replicated Data. In Proc.
SOSP, 1979, pages 150–162.

[Gnu] Gnutella: The Annotated Gnutella Protocol Specification v0.4.
url: http://rfc-gnutella.sourceforge.net/developer/
stable/index.html.

[Gol89] Eric Goles: Local Graph Transformations Driven by Lyapunov
Functionals. In Complex Systems, volume 3 (1), 1989, pages 173–
184.

[GM90] Eric Goles and Servet Martínez: Neural and Automata Networks.
Kluwer, 1990.

[GO88] Eric Goles and Andrew M. Odlyzko: Decreasing Energy Func-
tions and Lengths of Transients for Some Cellular Automata. In
Complex Systems, volume 2 (5), 1988, pages 501–507.

[GO80] Eric Goles and J. Olivos: Periodic behaviour of generalized thresh-
old functions. In Discrete Mathematics, volume 30 (2), 1980, pages
187–189.

[GFP85] Eric Goles-Chacc, Françoise Fogelman-Soulie, and Didier Pelle-
grin: Decreasing energy functions as a tool for studying threshold
networks. In Discrete Applied Mathematics, volume 12 (3), 1985,
pages 261–277.

[GV61] Gene H. Golub and Richard S. Varga: Chebyshev semi-iterative
methods, successive overrelaxation iterative methods, and second
order Richardson iterative methods. In Numerische Mathematik,
volume 3 (1), 1961, pages 147–156.

[Hae12] Bernhard Haeupler: Tighter Worst-Case Bounds on Algebraic
Gossip. In IEEE Communications Letters, volume 16 (8), 2012,
pages 1274–1276.

222

http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://rfc-gnutella.sourceforge.net/developer/stable/index.html

Bibliography

[Hae13] Bernhard Haeupler: Simple, Fast and Deterministic Gossip and
Rumor Spreading. In Proc. SODA, 2013, pages 705–716.

[HR90] Torben Hagerup and Christine Rüb: A guided tour of chernoff
bounds. In Information Processing Letters, volume 33 (6), 1990,
pages 305–308.

[HP01] Yehuda Hassin and David Peleg: Distributed Probabilistic Polling
and Applications to Proportionate Agreement. In Information
and Computation, volume 171 (2), 2001, pages 248–268.

[Hea08] Thomas L. Heath: The Thirteen Books of Euclid’s Elements.
Vol. 1–3. Cambridge University Press, 1908.

[HL75] Richard Holley and Thomas Liggett: Ergodic Theorems for
Weakly Interacting Infinite Systems and the Voter Model. In
The Annals of Probability, volume 3 (4), 1975, pages 643–663.

[HKP+05] Juraj Hromkovič, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and
Walter Unger: Dissemination of Information in Communication
Networks. Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance. Springer, 2005.

[Joh89] Barry W. Johnson, ed.: Design & Analysis of Fault Tolerant
Digital Systems. Addison-Wesley, 1989.

[JK77] Norman Lloyd Johnson and Samuel Kotz: Urn Models and Their
Application: An Approach to Modern Discrete Probability Theory.
Wiley, 1977.

[KMN15] Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Na-
tale: Brief Announcement: On the Voting Time of the Determin-
istic Majority Process. In Proceedings of the 29th International
Symposium on Distributed Computing (DISC), 2015.

[KMN16] Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Na-
tale: On the Voting Time of the Deterministic Majority Process.
In Proceedings of the 41st International Symposium on Mathe-
matical Foundations of Computer Science (MFCS), 2016. doi:
10.4230/LIPIcs.MFCS.2016.55.

[KSSV00] Richard Karp, Christian Schindelhauer, Scott Shenker, and
Berthold Vöcking: Randomized Rumor Spreading. In Proc. FOCS,
2000, pages 565–574.

[KPW14] Barbara Keller, David Peleg, and Roger Wattenhofer: How Even
Tiny Influence Can Have a Big Impact! In Proc. FUN, 2014,
pages 252–263.

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke: Gossip-Based
Computation of Aggregate Information. In Proc. FOCS, 2003,
pages 482–491.

223

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.55

Bibliography

[KMG03] Anne-Marie Kermarrec, Laurent Massoulie, and Ayalvadi J.
Ganesh: Probabilistic Reliable Dissemination in Large-Scale Sys-
tems. In IEEE Transactions on Parallel and Distributed Systems,
volume 14 (3), 2003, pages 248–258.

[Knu97] Donald E. Knuth: The Art of Computer Programming, 3rd edi-
tion. Vol. 1: Fundamental Algorithms. Addison-Wesley, 1997.

[KPS13] Kishore Kothapalli, Sriram Pemmaraju, and Vivek Sardeshmukh:
On the Analysis of a Label Propagation Algorithm for Community
Detection. In Proc. ICDCN, 2013, pages 255–269.

[KS08] Ajay D. Kshemkalyani and Mukesh Singhal: Distributed Com-
puting. Principles, Algorithms, and Systems. Cambridge, 2008.

[LN07] Nicolas Lanchier and Claudia Neuhauser: Voter model and biased
voter model in heterogeneous environments. In Journal of Applied
Probability, volume 44 (3), 2007, pages 770–787.

[Lig12] Thomas Liggett: Interacting particle systems. Springer Science
& Business Media, 2012.

[Lig85] Thomas M. Liggett: Interacting Particle Systems. Springer, 1985.
[LM15] Yuezhou Lv and Thomas Moscibroda: Local Information in

Influence Networks. In Proc. DISC, 2015, pages 292–308.
[Mal14] F. Mallmann-Trenn: Bounds on the voting time in terms of the

conductance. Master’s thesis. http://summit.sfu.ca/item/
14502. MA thesis. Simon Fraser University, 2014.

[MNRS14] George B. Mertzios, Sotiris E. Nikoletseas, Christoforos Rap-
topoulos, and Paul G. Spirakis: Determining Majority in Net-
works with Local Interactions and Very Small Local Memory. In
Proc. ICALP, 2014, pages 871–882.

[Mil76] Gary L. Miller: Riemann’s Hypothesis and Tests for Primality. In
Journal of Computer and System Sciences, volume 13 (3), 1976.

[MU05] Michael Mitzenmacher and Eli Upfal: Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, 2005.

[MS06] Damon Mosk-Aoyama and Devavrat Shah: Computing Separable
Functions via Gossip. In Proc. PODC, 2006, pages 113–122.

[MT14] Elchanan Mossel and Omer Tamuz: Opinion Exchange Dynamics.
In CoRR, volume abs/1401.4770, 2014. url: http://arxiv.org/
abs/1401.4770.

[MR95] Rajeev Motwani and Prabhakar Raghavan: Randomized Algo-
rithms. Cambridge University Press, 1995.

224

http://summit.sfu.ca/item/14502
http://summit.sfu.ca/item/14502
http://arxiv.org/abs/1401.4770
http://arxiv.org/abs/1401.4770

Bibliography

[MGS98] S. Muthukrishnan, B. Ghosh, and M. H. Schultz: First- and
Second-Order Diffusive Methods for Rapid, Coarse, Distributed
Load Balancing. In Theory of Computing Systems, volume 31 (4),
1998, pages 331–354.

[NIY99] Toshio Nakata, Hiroshi Imahayashi, and Masafumi Yamashita:
Probabilistic Local Majority Voting for the Agreement Problem
on Finite Graphs. In Proc. COCOON, 1999, pages 330–338.

[Oli12] Roberto I. Oliveira: On the coalescence time of reversible random
walks. In Transactions of the American Mathematical Society,
volume 364 (4), 2012, pages 2109–2128.

[Pel02] David Peleg: Local majorities, coalitions and monopolies in
graphs: a review. In Theoretical Computer Science, volume 282 (2),
2002, pages 231–257.

[Pel14] David Peleg: Immunity against Local Influence. In Language, Cul-
ture, Computation. Computing - Theory and Technology, volume
8001, LNCS. Springer, 2014, pages 168–179.

[PVV09] Etienne Perron, Dinkar Vasudevan, and Milan Vojnović: Using
Three States for Binary Consensus on Complete Graphs. In Proc.
INFOCOM, 2009, pages 2527–2535.

[Pit87] Boris Pittel: Linear Probing: The Probable Largest Search Time
Grows Logarithmically with the Number of Records. In Journal
of Algorithms, volume 8 (2), 1987, pages 236–249.

[PS83] Svatopluk Poljak and Miroslav Sůra: On periodical behaviour in
societies with symmetric influences. In Combinatorica, volume
3 (1), 1983, pages 119–121.

[PT86] Svatopluk Poljak and Daniel Turzík: On an application of convex-
ity to discrete systems. In Discrete Applied Mathematics, volume
13 (1), 1986, pages 27–32.

[RS98] Martin Raab and Angelika Steger: “Balls into Bins” — A Simple
and Tight Analysis. In Proc. RANDOM, 1998, pages 159–170.

[RSW98] Yuval Rabani, Alistair Sinclair, and Rolf Wanka: Local Divergence
of Markov Chains and the Analysis of Iterative Load-Balancing
Schemes. In Proc. FOCS, 1998, pages 694–703.

[Rab80] Michael O. Rabin: Probabilistic Algorithm for Resting Primality.
In Journal of Number Theory, volume 12 (1), 1980.

[RAK07] Usha Raghavan, Réka Albert, and Soundar Kumara: Near linear
time algorithm to detect community structures in large-scale net-
works. In Physical Review E, volume 76 (3), 2007, pages 036106.

[SSKÇ13] Ahmet Erdem Sarıyüce, Erik Saule, Kamer Kaya, and Ümit V.
Çatalyürek: Shattering and Compressing Networks for Between-
ness Centrality. In Proc. SDM, 2013, pages 686–694.

225

Bibliography

[SS12] Thomas Sauerwald and He Sun: Tight Bounds for Randomized
Load Balancing on Arbitrary Network Topologies. In Proc. FOCS,
2012, pages 341–350.

[TT15] Omer Tamuz and Ran J. Tessler: Majority Dynamics and the
Retention of Information. In Israel Journal of Mathematics,
volume 206 (1), 2015, pages 483–507.

[Win08a] Peter Winkler: Puzzled: Delightful Graph Theory. In Communi-
cations of the ACM, volume 51 (8), 2008, pages 104.

[Win08b] Peter Winkler: Puzzled: Solutions and Sources. In Communica-
tions of the ACM, volume 51 (9), 2008, pages 103.

[Wor81a] Nicholas C. Wormald: The asymptotic connectivity of labelled
regular graphs. In Journal of Combinatorial Theory, Series B,
volume 31 (2), 1981, pages 156–167.

[Wor81b] Nicholas C. Wormald: The asymptotic distribution of short cycles
in random regular graphs. In Journal of Combinatorial Theory,
Series B, volume 31 (2), 1981, pages 168–182.

[Wor99] Nicholas C. Wormald: Models of Random Regular Graphs. In
Surveys in Combinatorics, 1999, volume 267, London Mathemat-
ical Society Lecture Note Series. Cambridge University Press,
1999, pages 239–298.

226

List of Figures

8.1 comparison of the communication overhead 64
8.2 additional node failures over disabled nodes 65
8.3 detailed plot for Figure 8.1 . 66
8.4 further graph sizes for Figure 8.2 68
8.5 detailed plot for Figure 8.2 . 69

11.1 load-balancing simulation on a 1000× 1000 torus 92
11.2 load-balancing simulation with various initial loads 95
11.3 comparison between SOS and FOS 95
11.4 applying FOS after SOS . 96
11.5 direct comparison of the data from Figure 11.4 96
11.6 comparison between continuous and discrete load balancing . 96
11.7 impact of eigenvectors on the load 97
11.8 effect of switching from SOS to FOS 97
11.9 visualization of load on a 1000× 1000 torus 98
11.10 further renderings of the visualization from Figure 11.9 99
11.11 the smoothing effect of FOS after SOS 99
11.12 load-balancing simulation on a random regular graph 100
11.13 load-balancing simulation on the hypercube 100
11.14 load-balancing simulation on a random geometric graph . . . 101
11.15 load-balancing simulation on a 100× 100 torus 101

13.1 literal nodes and or-gate . 112
13.2 and-gate . 113
13.3 2/3-gate . 114
13.4 cliques on layer 1 . 115
13.5 full example for a reduction 122

14.1 bad arrow . 123
14.2 bad arrows in the potential function 124
14.3 example for tightness of our bounds 127

15.1 example to disprove monotonicity w.r.t. potential function . . 134
15.2 bad arrow assignment . 135
15.3 valid and invalid bad arrows assignments 136
15.4 two-dimensional grid . 137
15.5 circle graph with additional gadgets 137

227

List of Figures

17.1 schematic representation of the coupling 156

19.1 graphical representation of Algorithm 19.1 177
19.2 the Check-Synchronicity procedure 180
19.3 the Shuffle Gadget . 183
19.4 the Two-Choices sub-phase 187
19.5 the Bit-Propagation sub-phase 189

20.1 run time for distributed consensus algorithms 203
20.2 empirical analysis of Algorithm 18.1 203
20.3 success rate of Algorithm 17.1 and Algorithm 18.1 204

21.1 detail from Figure 8.1 . 207
21.2 detail from Figure 11.7 . 208
21.3 detail from Figure 13.5 . 208
21.4 detail from Figure 20.1 . 209

228

List of Tables

1.1 contributions of the author to various chapters 6
1.2 presentations given by the author 7

6.1 operations for gossiping algorithms 31
6.2 queue operations . 33

8.1 constants used in the simulation 65

11.1 graph classes and parameters used in the simulation 90

17.1 corresponding sets in the coupling 157

229

List of Algorithms

6.1 gossiping algorithm . 32

7.1 leader-election algorithm . 54
7.2 memory-based gossiping algorithm 57

8.1 simple push-pull algorithm . 63

11.1 randomized rounding algorithm 89

17.1 distributed voting protocol with two choices 152

18.1 distributed voting protocol with one bit of memory 166

19.1 asynchronous voting protocol 177
19.2 Check-Synchronicity procedure 180
19.3 Shuffle Gadget . 183
19.4 Two-Choices sub-phase . 187
19.5 Bit-Propagation sub-phase . 189

20.1 simulated asynchronous voting protocol 204

231

List of Definitions

1 set of informed vertices Im(t) 33
2 safe area . 45

3 rounding scheme . 82
4 linearity (FOS) . 82
5 contributions (FOS) . 82
6 linearity (SOS) . 85
7 contributions (SOS) . 85

8 opinion assignment . 107
9 the deterministic binary majority process 108
10 convergence time and voting time 108
11 voting time decision problem vtdp 108
12 family of nodes . 109
13 asymmetric graph . 109

14 stable time . 116
15 activation time . 117

16 bad arrow . 123
17 looped graph G∗ . 126
18 q-swap . 128
19 q-permanent opinion assignment 128
20 family fam(u) of a node u . 130

21 bad arrows assignment . 134

22 stabilizing near-plurality protocol 147

23 period, phase, real time . 176
24 ∆-closeness . 178
25 Dead Node . 181

233

List of Definitions

26 Alive Node . 181
27 Generalized Pólya Urn Process 190
28 feasible ν-drift function [DG13] 198

234

List of Theorems

1 run time of traditional gossiping algorithm 33

25 run time of memory based gossiping algorithm 59
26 robustness of memory based gossiping algorithm 60

31 bounds on the deviation of discrete FOS 84
34 bounds on the deviation of discrete SOS 86
37 bounds on negative load . 87

38 NP-completeness of the vtdp 108
39 voting time of the deterministic binary majority process . . . 109

48 bounds on the voting time for odd-degree graphs 123
49 bounds on the voting time for general graphs 126
52 improved bounds on the voting time 127

61 convergence time of the two choices process 148
62 convergence time of the OneBit process 149
63 convergence time of the AsyncPlurality process 150

68 lower bound on the initial bias 159
69 lower bound on the run time 161

235

	Preface
	Abstract
	Introduction
	1 Introduction
	1.1 Distributed Systems
	1.2 Organization
	1.3 Publications and Contributions

	2 Algorithmic Ingredients
	2.1 Models for Distributed Systems
	2.2 Randomized Algorithms

	3 Stochastic Ingredients
	3.1 Union Bound
	3.2 Chernoff Bounds
	3.3 The Azuma-Hoeffding Inequality

	4 Our Results
	4.1 Information Dissemination
	4.2 Load Balancing
	4.3 Distributed Voting and Plurality Consensus

	I Information Dissemination
	5 Introduction
	5.1 Related Work
	5.2 Our Results
	5.3 Model and Notation

	6 Traditional Model
	6.1 Phase I – Distribution
	6.2 Phase II – Random Walks
	6.3 Phase III – Broadcast

	7 Memory Model
	7.1 Leader Election
	7.2 Gossiping Algorithm and its Analysis

	8 Empirical Analysis
	8.1 Communication Complexity
	8.2 Robustness of the Memory Model

	A Additional Lemmas

	II Load Balancing
	9 Load Balancing
	9.1 Models
	9.2 New Results

	10 Framework for Diffusion Schemes
	10.1 First Order Diffusion Schemes
	10.2 Randomized First Order Scheme
	10.3 Second Order Diffusion Schemes
	10.4 Randomized Second Order Scheme
	10.5 Negative Load in Second Order Schemes

	11 Simulation Results
	11.1 Results for the Torus
	11.2 Further Networks

	III The Deterministic Majority Voting Process
	12 Introduction
	12.1 Preliminaries
	12.2 Our Contribution

	13 NP-Completeness
	13.1 Reduction

	14 Bounds on the Voting Time
	14.1 Improved Bounds for Dense Graphs
	14.2 The Influence of Symmetry

	15 Further Computational Properties

	IV Rapid Plurality Consensus
	16 Introduction
	16.1 Model
	16.2 Our Contribution

	17 Plurality Consensus with Two Choices
	17.1 Lower Bounds
	17.2 Comparison with the 3-Majority Process

	18 One Bit of Memory
	19 Asynchronous Protocol
	19.1 Analysis of the Check-Synchronicity procedure
	19.2 Analysis of the Shuffle Gadget
	19.3 Analysis of the Two-Choices sub-phase
	19.4 Analysis of the Bit-Propagation sub-phase
	19.5 The Endgame
	19.6 Proof of Theorem refcounterthm:async63

	20 Simulation Results

	Conclusions and Outlook
	21 Summary and Conclusions
	22 Open Problems

	Appendix

