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Distributed Computing
Characterizing Distributed Systems

I collection of connected computing devices
I solve suitable subproblems in parallel

I improved performance
I resilience against component failure

I lack of common memory
I lack of common clock
I lack of network structure
I heterogeneity
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Distributed Computing
A Model for Distributed Systems

I graph G = (V,E) with |V | = n

I communication with direct neighbors
I algorithms operate in synchronous rounds
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Distributed Computing
A Model for Distributed Systems

I graph G = (V,E) with |V | = n

I communication with direct neighbors
I algorithms operate in synchronous rounds

Optimize for...

I runtime efficiency
I local memory requirements
I communication overhead

I fault tolerance
I energy consumption
I ...
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Information Dissemination
Communication in the Random Phone Call Model

The Random Phone Call Model
I in each round, open a connection to a randomly chosen neighbor
I bi-directional communication over this channel

Demers et al., 1987
Karp, Schindelhauer, Shenker, and Vöcking, 2000

Randomization
I efficient randomized algorithm
I solve the problem with high probability: 1− n−Ω(1)
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Information Dissemination
The Gossiping Problem

I each node has its own initial message

I goal: distribute all messages to all nodes
I O(log n) time, Ω(n log n) messages

Berenbrink, Czyzowicz, Elsässer, and Gąsieniec, 2010

I gossiping algorithms do extend to sparse graphs

7



PhD Defense

Dominik Kaaser

Distributed
Computing
Model

Problems &
Contributions
Information
Dissemination
Load Balancing
Distributed Voting
Plurality
Consensus

Information Dissemination
The Gossiping Problem

I each node has its own initial message
I goal: distribute all messages to all nodes

I O(log n) time, Ω(n log n) messages
Berenbrink, Czyzowicz, Elsässer, and Gąsieniec, 2010

I gossiping algorithms do extend to sparse graphs

7



PhD Defense

Dominik Kaaser

Distributed
Computing
Model

Problems &
Contributions
Information
Dissemination
Load Balancing
Distributed Voting
Plurality
Consensus

Information Dissemination
The Gossiping Problem

I each node has its own initial message
I goal: distribute all messages to all nodes
I O(log n) time, Ω(n log n) messages

Berenbrink, Czyzowicz, Elsässer, and Gąsieniec, 2010

I gossiping algorithms do extend to sparse graphs

7



PhD Defense

Dominik Kaaser

Distributed
Computing
Model

Problems &
Contributions
Information
Dissemination
Load Balancing
Distributed Voting
Plurality
Consensus

Information Dissemination
The Gossiping Problem

I each node has its own initial message
I goal: distribute all messages to all nodes
I O(log n) time, Ω(n log n) messages

Berenbrink, Czyzowicz, Elsässer, and Gąsieniec, 2010

I gossiping algorithms do extend to sparse graphs

7



PhD Defense

Dominik Kaaser

Distributed
Computing
Model

Problems &
Contributions
Information
Dissemination
Load Balancing
Distributed Voting
Plurality
Consensus

Our Results

Theorem Elsässer and K., 2015

The gossiping problem can be solved on a random regular graph with node de-
gree Ω

(
logk n

)
for k ≥ 4 in O

(
log2 n/ log logn

)
time using O(n log n/ log log n)

message transmissions, with high probability.

Robert Elsässer and D. K.: On the Influence of Graph Density on Randomized Gossiping.
In Proceedings of the 29th IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2015.
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Our Results

Theorem Elsässer and K., 2015

The gossiping problem can be solved on a random regular graph with node de-
gree Ω

(
logk n

)
for k ≥ 4 in O

(
log2 n/ log logn

)
time using O(n log n/ log log n)

message transmissions, with high probability.

Theorem Elsässer and K., 2015

If we may store a constant number of connections, the gossiping problem can
be solved in O(log n) time using only O(n) message transmissions, with high
probability.

Robert Elsässer and D. K.: On the Influence of Graph Density on Randomized Gossiping.
In Proceedings of the 29th IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2015.
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Our Results Empirical Analysis
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Diffusion Based Load Balancing

I parallel machine modeled as graph
I different amounts of load generated on processors
I balance load to obtain a substantial benefit

for the runtime of the parallel computation

I exchange load with direct neighbors
I assume continuous load items

Diekmann, Frommer, and Monien, 1999

I bound deviation of discrete schemes from continuous schemes
Rabani, Sinclair, and Wanka, 1998

10



PhD Defense

Dominik Kaaser

Distributed
Computing
Model

Problems &
Contributions
Information
Dissemination
Load Balancing
Distributed Voting
Plurality
Consensus

Diffusion Based Load Balancing

I parallel machine modeled as graph
I different amounts of load generated on processors
I balance load to obtain a substantial benefit

for the runtime of the parallel computation
I exchange load with direct neighbors
I assume continuous load items

Diekmann, Frommer, and Monien, 1999

I bound deviation of discrete schemes from continuous schemes
Rabani, Sinclair, and Wanka, 1998

10



PhD Defense

Dominik Kaaser

Distributed
Computing
Model

Problems &
Contributions
Information
Dissemination
Load Balancing
Distributed Voting
Plurality
Consensus

Diffusion Based Load Balancing

I parallel machine modeled as graph
I different amounts of load generated on processors
I balance load to obtain a substantial benefit

for the runtime of the parallel computation
I exchange load with direct neighbors
I assume continuous load items

Diekmann, Frommer, and Monien, 1999

I bound deviation of discrete schemes from continuous schemes
Rabani, Sinclair, and Wanka, 1998

10



PhD Defense

Dominik Kaaser

Distributed
Computing
Model

Problems &
Contributions
Information
Dissemination
Load Balancing
Distributed Voting
Plurality
Consensus

Diffusion Based Load Balancing

I parallel machine modeled as graph
I different amounts of load generated on processors
I balance load to obtain a substantial benefit

for the runtime of the parallel computation
I exchange load with direct neighbors
I assume continuous load items

Diekmann, Frommer, and Monien, 1999

I bound deviation of discrete schemes from continuous schemes
Rabani, Sinclair, and Wanka, 1998

First Order Scheme – FOS
load sent to neighbors depends only on load difference in current round

Muthukrishnan, Ghosh, and Schultz, 1998
10



PhD Defense

Dominik Kaaser

Distributed
Computing
Model

Problems &
Contributions
Information
Dissemination
Load Balancing
Distributed Voting
Plurality
Consensus

Diffusion Based Load Balancing

I parallel machine modeled as graph
I different amounts of load generated on processors
I balance load to obtain a substantial benefit

for the runtime of the parallel computation
I exchange load with direct neighbors
I assume continuous load items

Diekmann, Frommer, and Monien, 1999

I bound deviation of discrete schemes from continuous schemes
Rabani, Sinclair, and Wanka, 1998

Second Order Scheme – SOS
also take flow from previous round into account

Muthukrishnan, Ghosh, and Schultz, 1998
10
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Our Results Empirical Analysis: 2D Torus (1000× 1000)
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Our Results Empirical Analysis
Switch from SOS to FOS
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Hoda Akbari, Petra Berenbrink, Robert Elsässer, and D. K.: Discrete Load Balancing in
Heterogeneous Networks with a Focus on Second-Order Diffusion. In Proceedings of the 35th
IEEE International Conference on Distributed Computing Systems (ICDCS), 2015.
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Distributed Voting
The Deterministic Binary Majority Voting Process

I given a graph G = (V,E)

I initial opinion assignment f0 : V → {0, 1}
I every node adopts the majority opinion in every round

13
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Known Results

I The process always converges to a two-periodic state. Goles and Olivos, 1980
Poljak and Sůra, 1983

I The process converges after at most O(|E|) rounds. Winkler, 2008

I These bounds are tight. Frischknecht, Keller, and Wattenhofer, 2013
Keller, Peleg, and Wattenhofer, 2014

I Application: analysis of community-detection algorithms
Raghavan, Albert, and Kumara, 2007

Cordasco and Gargano, 2010
Kothapalli, Pemmaraju, and Sardeshmukh, 2013
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Our Results
NP Hardness Result

Definition: voting time decision problem (VTDP)

For a given graph G and an integer k, is there an assignment of initial opinions
such that the voting time of G is at least k?

Theorem K., Mallmann-Trenn, and Natale, 2016

Given a general simple graph G, VTDP is NP-complete.

D. K., Frederik Mallmann-Trenn, and Emanuele Natale: On the Voting Time of the
Deterministic Majority Process. In Proceedings of the 41st International Symposium on
Mathematical Foundations of Computer Science (MFCS), 2016.
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Our Results
Bounds on the Voting Time

Definition
A set of nodes S is called a family if ∀ u, v ∈ S : N(u) \ {v} = N(v) \ {u}.

The asymmetric graph G∆ = (V ∆, E∆) is constructed from G = (V,E) by
contracting every family to one (or two) nodes.

Theorem K., Mallmann-Trenn, and Natale, 2016

The voting time is at most

1 + min

{
|E∆| −

|V ∆
odd|
2

,
|E∆|

2
+
|V ∆

even|
4

+
7

4
· |V ∆|

}
.
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Our Results
Bounds on the Voting Time

Definition
A set of nodes S is called a family if ∀ u, v ∈ S : N(u) \ {v} = N(v) \ {u}.

The asymmetric graph G∆ = (V ∆, E∆) is constructed from G = (V,E) by
contracting every family to one (or two) nodes.

Theorem K., Mallmann-Trenn, and Natale, 2016

The voting time is bounded by the voting time in G∆.
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Plurality Consensus

I given a complete graph of n nodes and k = nε possible opinions

17
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Plurality Consensus

I given a complete graph of n nodes and k = nε possible opinions

Pull Voting
I open connection to randomly chosen neighbor
I adopt this neighbor’s opinion
I requires Ω(n) rounds to converge

Nakata, Imahayashi, and Yamashita, 1999
Hassin and Peleg, 2001

Cooper, Elsässer, Ono, and Radzik, 2013
Berenbrink, Giakkoupis, Kermarrec, and Mallmann-Trenn, 2016
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Plurality Consensus

I given a complete graph of n nodes and k = nε possible opinions

Pull Voting
I open connection to randomly chosen neighbor
I adopt this neighbor’s opinion
I requires Ω(n) rounds to converge

Two-Choices Process
I sample two nodes and if their opinions coincide, adopt it
I requires a bias of Ω

(√
n log n

)
for the plurality opinion A to win

I however, only after Ω(k) rounds

Cooper, Elsässer, and Radzik, 2014
Cooper, Elsässer, Radzik, Rivera, and Shiraga, 2015
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One Bit of Memory
For O(log n) phases do at each node v in parallel

1 Two-Choices Round;
log k Bit-Propagation Rounds;

Theorem Elsässer, Friedetzky, K., Mallmann-Trenn, and Trinker

If the bias towards the initial plurality color is z ·
√
n log3 n for some constant z,

then the one-bit process converges to the plurality color within O(log n · log k)
rounds, with high probability.

Ghaffari and Parter, 2016
Berenbrink, Friedetzky, Giakkoupis, and Kling, 2016
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One Bit of Memory Simulation Results
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Our Results Asynchronous Model

Result Elsässer, Friedetzky, K., Mallmann-Trenn, and Trinker

After some careful modifications, the results for the one-bit process carry over to
the asynchronous model.

Asynchronous Model
I each node is equipped with a random Poisson clock
I upon activation, nodes perform their action according to the algorithm

I sub-phases contain long do-nothing-blocks
I Shuffle-Gadget decouples ticks from opinions
I Check-Synchronicity-Procedure disables nodes

which are no longer synchronous

20
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Empirical Evaluation Runtime Comparison
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Thank You for Your Attention — Questions Welcome!
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