Efficient Randomized Algorithms for Distributed Systems Information Dissemination, Distributed Voting, and Plurality Consensus

Dominik S. Kaaser

PhD Defense

January 26, 2017

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Outline

Distributed Computing

Model

Problems & Contributions

Information Dissemination Load Balancing Distributed Voting Plurality Consensus

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contribution

Characterizing Distributed Systems

- collection of connected computing devices
- solve suitable subproblems in parallel

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contribution

Characterizing Distributed Systems

- collection of connected computing devices
- solve suitable subproblems in parallel
- ▶ improved performance
- resilience against component failure

PhD Defense

Dominik Kaaser

Distributed Computing

Problems & Contributions

Characterizing Distributed Systems

- collection of connected computing devices
- solve suitable subproblems in parallel
- improved performance
- resilience against component failure
- ▶ lack of common memory

PhD Defense

Dominik Kaaser

Distributed Computing

Problems &

Characterizing Distributed Systems

- collection of connected computing devices
- solve suitable subproblems in parallel
- improved performance
- resilience against component failure
- ► lack of common memory
- ▶ lack of common clock

PhD Defense

Dominik Kaaser

Distributed Computing

Problems & Contributions

Characterizing Distributed Systems

- collection of connected computing devices
- solve suitable subproblems in parallel
- improved performance
- resilience against component failure
- ▶ lack of common memory
- ▶ lack of common clock
- ► lack of network structure

PhD Defense

Dominik Kaaser

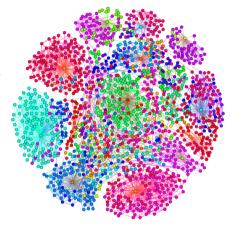
Distributed Computing

Problems &

Characterizing Distributed Systems

- collection of connected computing devices
- solve suitable subproblems in parallel
- improved performance
- resilience against component failure
- ▶ lack of common memory
- ▶ lack of common clock
- ► lack of network structure
- heterogeneity

PhD Defense


Dominik Kaaser

Distributed Computing

Problems & Contributions

A Model for Distributed Systems

- graph G = (V, E) with |V| = n
- communication with direct neighbors
- algorithms operate in synchronous rounds

PhD Defense

Dominik Kaaser

Distributed Computing Model

A Model for Distributed Systems

- ▶ graph G = (V, E) with |V| = n
- communication with direct neighbors
- ▶ algorithms operate in synchronous rounds

Optimize for...

- runtime efficiency
- local memory requirements
- communication overhead

- ► fault tolerance
- energy consumption
- **>** ...

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Communication in the Random Phone Call Model

The Random Phone Call Model

- ▶ in each round, open a connection to a randomly chosen neighbor
- bi-directional communication over this channel

Demers et al., 1987

Karp, Schindelhauer, Shenker, and Vöcking, 2000

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Information Dissemination

Communication in the Random Phone Call Model

The Random Phone Call Model

- ▶ in each round, open a connection to a randomly chosen neighbor
- bi-directional communication over this channel

Demers et al., 1987

Karp, Schindelhauer, Shenker, and Vöcking, 2000

Randomization

- efficient randomized algorithm
- solve the problem with high probability: $1 n^{-\Omega(1)}$

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Information Dissemination

The Gossiping Problem

each node has its own initial message

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Information Dissemination

The Gossiping Problem

- each node has its own initial message
- goal: distribute all messages to all nodes

PhD Defense

Dominik Kaaser

Distributed Computing

Problems & Contributions

The Gossiping Problem

- each node has its own initial message
- ▶ goal: distribute all messages to all nodes
- ▶ $\mathcal{O}(\log n)$ time, $\Omega(n \log n)$ messages

Berenbrink, Czyzowicz, Elsässer, and Gąsieniec, 2010

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Consensus

Information Dissemination Load Balancing Distributed Voting

The Gossiping Problem

- each node has its own initial message
- ▶ goal: distribute all messages to all nodes
- $ightharpoonup \mathcal{O}(\log n)$ time, $\Omega(n\log n)$ messages

Berenbrink, Czyzowicz, Elsässer, and Gąsieniec, 2010

gossiping algorithms do extend to sparse graphs

PhD Defense

Dominik Kaaser

Distributed Computing

_ ..

Problems & Contributions

Elsässer and K., 2015 Theorem

The gossiping problem can be solved on a random regular graph with node degree $\Omega(\log^k n)$ for $k \ge 4$ in $\mathcal{O}(\log^2 n/\log\log n)$ time using $\mathcal{O}(n\log n/\log\log n)$ message transmissions, with high probability.

Theorem

Elsässer and K., 2015

The gossiping problem can be solved on a random regular graph with node degree $\Omega(\log^k n)$ for $k \geq 4$ in $\mathcal{O}(\log^2 n/\log\log n)$ time using $\mathcal{O}(n\log n/\log\log n)$ message transmissions, with high probability.

Theorem

Elsässer and K., 2015

If we may store a constant number of connections, the gossiping problem can be solved in $\mathcal{O}(\log n)$ time using only $\mathcal{O}(n)$ message transmissions, with high probability.

Robert Elsässer and D. K.: On the Influence of Graph Density on Randomized Gossiping. In Proceedings of the 29th IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2015.

PhD Defense

Dominik Kaaser

Computing Model

Problems & Contributions

Information Dissemination

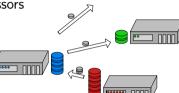
Empirical Analysis

Dominik Kaaser

Distributed Computing Model

Problems & Contributions

Plurality Consensus


Information
Dissemination
Load Balancing
Distributed Voting

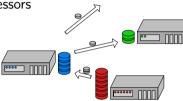
parallel machine modeled as graph

different amounts of load generated on processors

 balance load to obtain a substantial benefit for the runtime of the parallel computation

Dominik Kaaser

Distributed Computing


Model

Problems & Contributions

- parallel machine modeled as graph
- different amounts of load generated on processors
- balance load to obtain a substantial benefit for the runtime of the parallel computation
- exchange load with direct neighbors
- ► assume continuous load items

 Diekmann, Frommer, and Monien, 1999

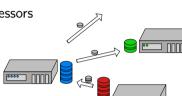
PhD Defense

Dominik Kaaser

Distributed Computing

Problems &

parallel machine modeled as graph


 balance load to obtain a substantial benefit for the runtime of the parallel computation

exchange load with direct neighbors

► assume continuous load items

Diekmann, Frommer, and Monien, 1999

 bound deviation of discrete schemes from continuous schemes Rabani, Sinclair, and Wanka, 1998

PhD Defense

Dominik Kaaser

Distributed Computing

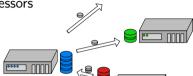
Problems & Contributions

parallel machine modeled as graph

 balance load to obtain a substantial benefit for the runtime of the parallel computation

exchange load with direct neighbors

assume continuous load items
 Diekmann, Frommer, and Monien, 1999


 bound deviation of discrete schemes from continuous schemes Rabani, Sinclair, and Wanka, 1998

First Order Scheme - FOS

load sent to neighbors depends only on load difference in current round

Muthukrishnan, Ghosh, and Schultz, 1998

PhD Defense

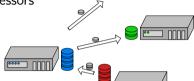
Dominik Kaaser

Distributed Computing

Problems & Contributions

parallel machine modeled as graph

 balance load to obtain a substantial benefit for the runtime of the parallel computation

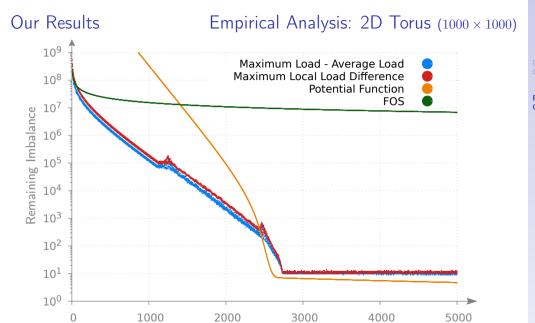

exchange load with direct neighbors

assume continuous load items
Diekmann, Frommer, and Monien, 1999

▶ bound deviation of discrete schemes from continuous schemes Rabani, Sinclair, and Wanka, 1998

Second Order Scheme - SOS

also take flow from previous round into account



Dominik Kaaser

Distributed Computing

Problems &

Round

PhD Defense

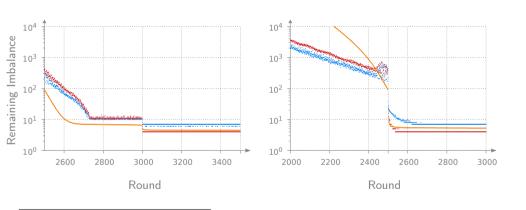
Dominik Kaaser

Distributed Computing Model

Problems & Contributions

Our Results Switch from SOS to FOS

Empirical Analysis



Dominik Kaaser

Distributed
Computing
Model

Problems & Contributions

Dissemination
Load Balancing
Distributed Voting
Plurality
Consensus

Hoda Akbari, Petra Berenbrink, Robert Elsässer, and D. K.: *Discrete Load Balancing in Heterogeneous Networks with a Focus on Second-Order Diffusion*. In *Proceedings of the 35th IEEE International Conference on Distributed Computing Systems (ICDCS)*, 2015.

Distributed Voting

The Deterministic Binary Majority Voting Process

- given a graph G = (V, E)
- lacktriangle initial opinion assignment $f_0:V \to \{0,1\}$
- every node adopts the majority opinion in every round

PhD Defense

Dominik Kaaser

Distributed Computing

Problems &

Information
Dissemination
Load Balancing

Distributed Voting

► The process always converges to a two-periodic state. Goles and Olivos, 1980 Poljak and Sůra, 1983

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Information Dissemination Load Balancing

Distributed Voting

► The process always converges to a two-periodic state. Goles and Olivos, 1980
Poljak and Sůra, 1983

 $\,\blacktriangleright\,$ The process converges after at most $\mathcal{O}(|E|)$ rounds.

Winkler, 2008

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Information
Dissemination
Load Balancing

Distributed Voting

► The process always converges to a two-periodic state. Goles and Olivos, 1980

Poljak and Sůra, 1983

 \blacktriangleright The process converges after at most $\mathcal{O}(|E|)$ rounds.

Winkler, 2008

► These bounds are tight.

Frischknecht, Keller, and Wattenhofer, 2013 Keller, Peleg, and Wattenhofer, 2014

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Dissemination
Load Balancing
Distributed Voting

Distributed Voting Plurality Consensus

► The process always converges to a two-periodic state. Goles and Olivos, 1980 Poljak and Sůra, 1983

 $\,\blacktriangleright\,$ The process converges after at most $\mathcal{O}(|E|)$ rounds.

Winkler, 2008

► These bounds are tight.

Frischknecht, Keller, and Wattenhofer, 2013 Keller, Peleg, and Wattenhofer, 2014

Application: analysis of community-detection algorithms

Raghavan, Albert, and Kumara, 2007 Cordasco and Gargano, 2010 Kothapalli, Pemmaraju, and Sardeshmukh, 2013

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Dissemination Load Balancing Distributed Voting

Plurality

ırality nsensus

NP Hardness Result

Definition: voting time decision problem (VTDP)

For a given graph G and an integer k, is there an assignment of initial opinions such that the voting time of G is at least k?

Theorem

K., Mallmann-Trenn, and Natale, 2016

Given a general simple graph G, VTDP is NP-complete.

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Dissemination Load Balancing Distributed Voting

D. K., Frederik Mallmann-Trenn, and Emanuele Natale: On the Voting Time of the Deterministic Majority Process. In Proceedings of the 41st International Symposium on Mathematical Foundations of Computer Science (MFCS), 2016.

Bounds on the Voting Time

Definition

A set of nodes S is called a *family* if $\forall \ u,v \in S: N(u) \setminus \{v\} = N(v) \setminus \{u\}$.

The asymmetric graph $G^{\Delta}=(V^{\Delta},E^{\Delta})$ is constructed from G=(V,E) by contracting every family to one (or two) nodes.

Theorem

K., Mallmann-Trenn, and Natale, 2016

The voting time is at most

$$1 + \min \left\{ |E^{\Delta}| - \frac{|V_{odd}^{\Delta}|}{2}, \quad \frac{|E^{\Delta}|}{2} + \frac{|V_{even}^{\Delta}|}{4} + \frac{7}{4} \cdot |V^{\Delta}| \right\} .$$

PhD Defense

Dominik Kaaser

Distributed Computing Model

Problems & Contributions

Dissemination
Load Balancing
Distributed Voting

Distributed Voting
Plurality
Consensus

Bounds on the Voting Time

Definition

A set of nodes S is called a *family* if $\forall u, v \in S : N(u) \setminus \{v\} = N(v) \setminus \{u\}$.

The asymmetric graph $G^{\Delta} = (V^{\Delta}, E^{\Delta})$ is constructed from G = (V, E) by contracting every family to one (or two) nodes.

Theorem

K., Mallmann-Trenn, and Natale, 2016

The voting time is bounded by the voting time in G^{Δ} .

PhD Defense

Dominik Kasser

Model

Problems & Contributions

Dissemination Load Balancing Distributed Voting

Consensus

Plurality Consensus

 \blacktriangleright given a complete graph of n nodes and $k=n^{\varepsilon}$ possible opinions

PhD Defense

Dominik Kaaser

Distributed Computing

Model

Problems & Contributions

Information
Dissemination
Load Balancing
Distributed Voting

Plurality Consensus

• given a complete graph of n nodes and $k=n^{\varepsilon}$ possible opinions

Pull Voting

- open connection to randomly chosen neighbor
- adopt this neighbor's opinion
- requires $\Omega(n)$ rounds to converge

Nakata, Imahayashi, and Yamashita, 1999 Hassin and Peleg, 2001 Cooper, Elsässer, Ono, and Radzik, 2013 Berenbrink, Giakkoupis, Kermarrec, and Mallmann-Trenn, 2016

PhD Defense

Dominik Kaaser

Distributed Computing

Problems & Contributions

Information
Dissemination
Load Balancing
Distributed Voting
Plurality

Plurality Consensus

lacktriangledown given a complete graph of n nodes and $k=n^{arepsilon}$ possible opinions

Pull Voting

- open connection to randomly chosen neighbor
- adopt this neighbor's opinion
- requires $\Omega(n)$ rounds to converge

Two-Choices Process

- sample two nodes and if their opinions coincide, adopt it
- requires a bias of $\Omega(\sqrt{n \log n})$ for the plurality opinion A to win
- however, only after $\Omega(k)$ rounds

Cooper, Elsässer, and Radzik, 2014 Cooper, Elsässer, Radzik, Rivera, and Shiraga, 2015

PhD Defense

Dominik Kaaser

Distributed
Computing
Model

Problems & Contributions

One Bit of Memory

For $\mathcal{O}(\log n)$ phases do at each node v in parallel

1 Two-Choices Round; $\log k$ Bit-Propagation Rounds;

Theorem

Elsässer, Friedetzky, K., Mallmann-Trenn, and Trinker

If the bias towards the initial plurality color is $z \cdot \sqrt{n \log^3 n}$ for some constant z, then the one-bit process converges to the plurality color within $\mathcal{O}(\log n \cdot \log k)$ rounds, with high probability.

> Ghaffari and Parter, 2016. Berenbrink, Friedetzky, Giakkoupis, and Kling. 2016

PhD Defense

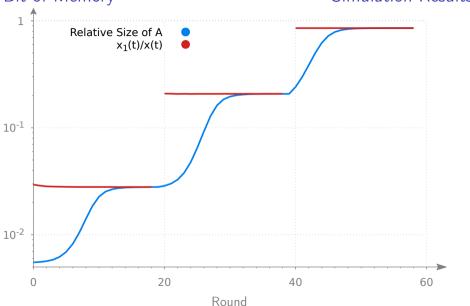
Dominik Kaaser

Model

Problems & Contributions

Dissemination Load Balancing Plurality Conceneus

One Bit of Memory


Simulation Results

PhD Defense Dominik Kaaser

Model

Problems & Contributions

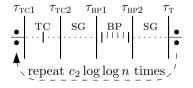
Information Dissemination Load Balancing Distributed Voting

Plurality Consensus

Result Elsässer, Friedetzky, K., Mallmann-Trenn, and Trinker

After some careful modifications, the results for the one-bit process carry over to the asynchronous model.

Asynchronous Model


- each node is equipped with a random Poisson clock
- upon activation, nodes perform their action according to the algorithm

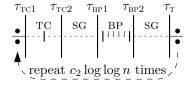
Result Elsässer, Friedetzky, K., Mallmann-Trenn, and Trinker

After some careful modifications, the results for the one-bit process carry over to the asynchronous model.

Asynchronous Model

- each node is equipped with a random Poisson clock
- upon activation, nodes perform their action according to the algorithm

Information Dissemination Load Balancing Distributed Voting


Plurality Consensus

Result Elsässer, Friedetzky, K., Mallmann-Trenn, and Trinker

After some careful modifications, the results for the one-bit process carry over to the asynchronous model.

Asynchronous Model

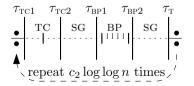
- each node is equipped with a random Poisson clock
- upon activation, nodes perform their action according to the algorithm

sub-phases contain long do-nothing-blocks

Result

Problems & Contributions

Information Dissemination Load Balancing Distributed Voting


Plurality Consensus

Elsässer, Friedetzky, K., Mallmann-Trenn, and Trinker

After some careful modifications, the results for the one-bit process carry over to the asynchronous model.

Asynchronous Model

- each node is equipped with a random Poisson clock
- upon activation, nodes perform their action according to the algorithm

- ► sub-phases contain long *do-nothing*-blocks
- Shuffle-Gadget decouples ticks from opinions

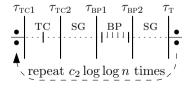
Result

Dominik Kaaser

Distributed Computing

Problems &

Information Dissemination Load Balancing Distributed Voting


Plurality Consensus

Elsässer, Friedetzky, K., Mallmann-Trenn, and Trinker

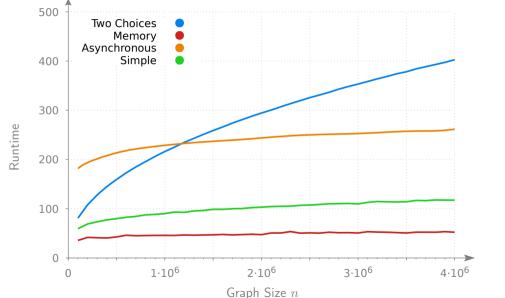
After some careful modifications, the results for the one-bit process carry over to the asynchronous model.

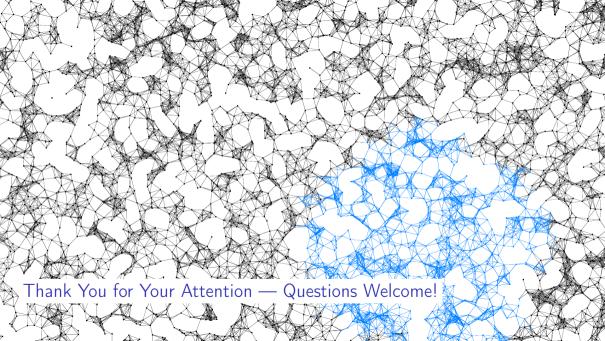
Asynchronous Model

- each node is equipped with a random Poisson clock
- upon activation, nodes perform their action according to the algorithm

- sub-phases contain long do-nothing-blocks
- ► *Shuffle-Gadget* decouples ticks from opinions
- Check-Synchronicity-Procedure disables nodes which are no longer synchronous

Runtime Comparison





PhD Defense

Model

Problems & Contributions

